A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
Fast and accurate monitoring of the phase,amplitude,and frequency of the grid voltage is essential for single-phase grid-connected converters.The presence of DC offset in the grid voltage is detrimental to not only gr...Fast and accurate monitoring of the phase,amplitude,and frequency of the grid voltage is essential for single-phase grid-connected converters.The presence of DC offset in the grid voltage is detrimental to not only grid synchronization but also the closed-loop stability of the grid-connected converters.In this paper,a new synchronization method to mitigate the effect of DC offset is presented using arbitrarily delayed signal cancelation(ADSC)in a second-order generalized integrator(SOGI)phase-locked loop(PLL).A frequency-fixed SOGI-based PLL(FFSOGI-PLL)is adopted to ensure better stability and to reduce the complexity compared with other SOGI-based PLLs.A small-signal model of the proposed PLL is derived for the systematic design of proportional-integral(PI)controller gains.The effects of frequency variation and ADSC on the proposed PLL are considered,and correction methods are adopted to accurately estimate grid information.The simulation results are presented,along with comparisons to other single-phase PLLs in terms of settling time,peak frequency,and phase error to validate the proposed PLL.The dynamic performance of the proposed PLL is also experimentally validated.Overall,the proposed PLL has the fastest transient response and better dynamic performance than the other PLLs for almost all performance indices,offering an improved solution for precise grid synchronization in single-phase applications.展开更多
虚拟阻抗控制在并联逆变器控制中得到了广泛应用,但是会带来电压降落的问题,并且虚拟阻抗法需要对输出电流求导,使得系统对输出电流噪声和非线性负载很敏感。为解决此问题,提出一种基于双重二阶广义积分器(dual-second order general in...虚拟阻抗控制在并联逆变器控制中得到了广泛应用,但是会带来电压降落的问题,并且虚拟阻抗法需要对输出电流求导,使得系统对输出电流噪声和非线性负载很敏感。为解决此问题,提出一种基于双重二阶广义积分器(dual-second order general integrator,DSOGI)的虚拟阻抗模型,该模型避免了对输出电流求导,降低了对输出电流的敏感度,从而较好地抑制了输出电流中的噪声,并降低了非线性负载对系统的影响;同时可减少电压降落和抑制系统间的环流,改善了系统的电能质量。对逆变器并联控制系统进行了应用对比分析,结果验证了基于DSOGI虚拟阻抗模型的有效性。展开更多
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
基金supported by the Deanship of Research at Jordan University of Science and Technology (Grant number:20210333).
文摘Fast and accurate monitoring of the phase,amplitude,and frequency of the grid voltage is essential for single-phase grid-connected converters.The presence of DC offset in the grid voltage is detrimental to not only grid synchronization but also the closed-loop stability of the grid-connected converters.In this paper,a new synchronization method to mitigate the effect of DC offset is presented using arbitrarily delayed signal cancelation(ADSC)in a second-order generalized integrator(SOGI)phase-locked loop(PLL).A frequency-fixed SOGI-based PLL(FFSOGI-PLL)is adopted to ensure better stability and to reduce the complexity compared with other SOGI-based PLLs.A small-signal model of the proposed PLL is derived for the systematic design of proportional-integral(PI)controller gains.The effects of frequency variation and ADSC on the proposed PLL are considered,and correction methods are adopted to accurately estimate grid information.The simulation results are presented,along with comparisons to other single-phase PLLs in terms of settling time,peak frequency,and phase error to validate the proposed PLL.The dynamic performance of the proposed PLL is also experimentally validated.Overall,the proposed PLL has the fastest transient response and better dynamic performance than the other PLLs for almost all performance indices,offering an improved solution for precise grid synchronization in single-phase applications.
文摘虚拟阻抗控制在并联逆变器控制中得到了广泛应用,但是会带来电压降落的问题,并且虚拟阻抗法需要对输出电流求导,使得系统对输出电流噪声和非线性负载很敏感。为解决此问题,提出一种基于双重二阶广义积分器(dual-second order general integrator,DSOGI)的虚拟阻抗模型,该模型避免了对输出电流求导,降低了对输出电流的敏感度,从而较好地抑制了输出电流中的噪声,并降低了非线性负载对系统的影响;同时可减少电压降落和抑制系统间的环流,改善了系统的电能质量。对逆变器并联控制系统进行了应用对比分析,结果验证了基于DSOGI虚拟阻抗模型的有效性。