Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be c...Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be controlled to be the heart of a patient suffering from a decrease in heart rate (Bradycardia). A system is designed to sense and calculate the heart rate per minute and it is considered as an input to the controller. The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart. The proposed controller is tested by using Matlab/Simulink program.展开更多
Background:Dual sensor (DS) for rate adaption was supposed to be more physiological.To evaluate its superiority,the DS (accelerometer [ACC] and minute ventilation [MV]) and normal sinus rate response were compare...Background:Dual sensor (DS) for rate adaption was supposed to be more physiological.To evaluate its superiority,the DS (accelerometer [ACC] and minute ventilation [MV]) and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing.Methods:This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant.Twenty-one patients came to the 1-month follow-up visit.Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode.For these patients,sensor response factors were left at default settings (ACC =8,MV =3) and sensor indicated rates (SIRs) for DS,ACC and MV sensor were retrieved from the pacemaker memories,along with measured sinus node (SN) rates from the beginning to 1-minute after the end of the treadmill test,and compared among study groups.Repeated measures analysis of variance and profile analysis,as well as variance analysis of randomized block designs,were used for statistical analysis.Results:Fifteen patients (15/2 l) were determined to be chronotropically competent.The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate:ACC vs.SN,MV vs.SN,DS vs.SN,respectively,34.84,17.60,16.15 beats/min),though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs.SN P-adjusted 〈 0.001; MV vs.SN P-adjusted =0.002; DS vs.SN P-adjusted =0.005).However,both in the range of 1st minute and first 3 minutes of exercise,only the DS SIR profile did not differ from sinus rates (P-adjusted =0.09,0.90,respectively).Conclusions:The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor).Further study is needed to determine if individual optimization would further improve adaptive performance of the DS.展开更多
The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health.The specific sensing of antibiotics with different toxicity levels is of high challenge,and mainly relies on expensive,time...The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health.The specific sensing of antibiotics with different toxicity levels is of high challenge,and mainly relies on expensive,time-consuming,and complex instruments.To realize specific sensing by rapid and handy optical sensors,a metal-organic framework(MOF)based dual sensor system is herein developed using two MOF materials BUT-128 and BUT-129 with high sensing selectivity and sensitivity.BUT-128 and BUT-129 exhibit the lowest limit of detection(LOD)towards chloramphenicol and furazolidone among reported MOF sensors.The corresponding dual sensor system with enriched signal readouts realized specific sensing of the strictly forbidden antibiotics(chloramphenicol and nitrofurans)from other regulated veterinary drugs including thiamphenicol,a structural analog of chloramphenicol.Besides,the strategy of this work is expected to flourish the development of optical sensors with high specificity for environment and food safety purposes.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a m...<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>展开更多
For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a sing...For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.展开更多
文摘Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be controlled to be the heart of a patient suffering from a decrease in heart rate (Bradycardia). A system is designed to sense and calculate the heart rate per minute and it is considered as an input to the controller. The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart. The proposed controller is tested by using Matlab/Simulink program.
文摘Background:Dual sensor (DS) for rate adaption was supposed to be more physiological.To evaluate its superiority,the DS (accelerometer [ACC] and minute ventilation [MV]) and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing.Methods:This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant.Twenty-one patients came to the 1-month follow-up visit.Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode.For these patients,sensor response factors were left at default settings (ACC =8,MV =3) and sensor indicated rates (SIRs) for DS,ACC and MV sensor were retrieved from the pacemaker memories,along with measured sinus node (SN) rates from the beginning to 1-minute after the end of the treadmill test,and compared among study groups.Repeated measures analysis of variance and profile analysis,as well as variance analysis of randomized block designs,were used for statistical analysis.Results:Fifteen patients (15/2 l) were determined to be chronotropically competent.The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate:ACC vs.SN,MV vs.SN,DS vs.SN,respectively,34.84,17.60,16.15 beats/min),though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs.SN P-adjusted 〈 0.001; MV vs.SN P-adjusted =0.002; DS vs.SN P-adjusted =0.005).However,both in the range of 1st minute and first 3 minutes of exercise,only the DS SIR profile did not differ from sinus rates (P-adjusted =0.09,0.90,respectively).Conclusions:The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor).Further study is needed to determine if individual optimization would further improve adaptive performance of the DS.
基金the National Natural Science Foundation of China(Nos.22038001,51621003,and 22108007)the Beijing Nova Program(No.Z211100002121094).
文摘The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health.The specific sensing of antibiotics with different toxicity levels is of high challenge,and mainly relies on expensive,time-consuming,and complex instruments.To realize specific sensing by rapid and handy optical sensors,a metal-organic framework(MOF)based dual sensor system is herein developed using two MOF materials BUT-128 and BUT-129 with high sensing selectivity and sensitivity.BUT-128 and BUT-129 exhibit the lowest limit of detection(LOD)towards chloramphenicol and furazolidone among reported MOF sensors.The corresponding dual sensor system with enriched signal readouts realized specific sensing of the strictly forbidden antibiotics(chloramphenicol and nitrofurans)from other regulated veterinary drugs including thiamphenicol,a structural analog of chloramphenicol.Besides,the strategy of this work is expected to flourish the development of optical sensors with high specificity for environment and food safety purposes.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
文摘<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>
文摘For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.