A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measureme...A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet (S J) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c (Actuator 1) and 40%c (Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall, the flow control performances of jet arrays are better than those of single actuator. At the angle of attack (AoA) just approaching and larger than the stall AoA, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.展开更多
基金support of the National Natural Science Foundation of China(No.11272150)
文摘A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet (S J) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c (Actuator 1) and 40%c (Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall, the flow control performances of jet arrays are better than those of single actuator. At the angle of attack (AoA) just approaching and larger than the stall AoA, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.