该设计是基于STM32的大功率白光LED可见光通信系统,白光从发送到接收传输距离最高可达5 m。可传输频率为300 Hz^8 k Hz的模拟信号及高保真音频,波特率可达1.6 Mb/s,输出信号在示波器上无明显失真。该系统具备双信道通信,两路信道同时均...该设计是基于STM32的大功率白光LED可见光通信系统,白光从发送到接收传输距离最高可达5 m。可传输频率为300 Hz^8 k Hz的模拟信号及高保真音频,波特率可达1.6 Mb/s,输出信号在示波器上无明显失真。该系统具备双信道通信,两路信道同时均可传输300 Hz^8 k Hz的模拟信号。由从站LCD12864液晶显示当前单信道通信或双信道通信。模拟信号经传输后在示波器上显示无明显失真。模拟信号为8倍采样,音频为6倍采样,采样信号经上拉放大后由12位A/D转换器采样,经过△压缩后由主站通过白光LED发射。接收站通过光电接收管接收信号后经解码、D/A转换,转换为模拟信号,模拟信号经滤波放大后输出至示波器或音频放大器。展开更多
Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slop...Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slope time to digital converter that employs the time to voltage conversion and integrating techniques for digitizing the time interval input signals is presented.The reference clock frequency of the TDC is 100 MHz and the input range is theoretically unlimited.The proposed converter features high accuracy,very small average error and high linear range.Also this converter has some advantages such as low circuit complexity,low power consumption and low sensitive to the temperature,power supply and process changes(PVT)compared with the time to digital converters that used preceding conversion techniques.The proposed converter uses an indirect time to digital conversion method.Therefore,our converter has the appropriate linearity without extra elements.In order to evaluate the proposed idea,an integrating time to digital converter is designed in 0.18 lm CMOS technology and was simulated by Hspice.Comparison of the theoretical and simulation results confirms the proposed TDC operation;therefore,the proposed converter is very convenient for applications which have average speed and low variations in the signal amplitude such as biomedical signals.展开更多
文摘该设计是基于STM32的大功率白光LED可见光通信系统,白光从发送到接收传输距离最高可达5 m。可传输频率为300 Hz^8 k Hz的模拟信号及高保真音频,波特率可达1.6 Mb/s,输出信号在示波器上无明显失真。该系统具备双信道通信,两路信道同时均可传输300 Hz^8 k Hz的模拟信号。由从站LCD12864液晶显示当前单信道通信或双信道通信。模拟信号经传输后在示波器上显示无明显失真。模拟信号为8倍采样,音频为6倍采样,采样信号经上拉放大后由12位A/D转换器采样,经过△压缩后由主站通过白光LED发射。接收站通过光电接收管接收信号后经解码、D/A转换,转换为模拟信号,模拟信号经滤波放大后输出至示波器或音频放大器。
文摘Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slope time to digital converter that employs the time to voltage conversion and integrating techniques for digitizing the time interval input signals is presented.The reference clock frequency of the TDC is 100 MHz and the input range is theoretically unlimited.The proposed converter features high accuracy,very small average error and high linear range.Also this converter has some advantages such as low circuit complexity,low power consumption and low sensitive to the temperature,power supply and process changes(PVT)compared with the time to digital converters that used preceding conversion techniques.The proposed converter uses an indirect time to digital conversion method.Therefore,our converter has the appropriate linearity without extra elements.In order to evaluate the proposed idea,an integrating time to digital converter is designed in 0.18 lm CMOS technology and was simulated by Hspice.Comparison of the theoretical and simulation results confirms the proposed TDC operation;therefore,the proposed converter is very convenient for applications which have average speed and low variations in the signal amplitude such as biomedical signals.