Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of ...Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.展开更多
In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topo...In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topological vector spaces and it is in this context that we have chosen to present this work. We are interested in the topology of its spaces and in the topologies of their dual spaces. The first part, we presented the fundamental topological properties of topological vector spaces. The second part, we studied Frechet spaces and particularly the space S(R<sup>n</sup>) of functions of class C<sup>∞ </sup>on R<sup>n</sup> which are as well as all their rapidly decreasing partial derivatives. We have also studied its dual S'(Rn</sup>) the space of tempered distributions. The last part aims to define a topological structure on an increasing union of Frechet spaces called inductive limit of Frechet spaces. We study in particular the space D(Ω) of functions of class C<sup>∞</sup> with compact supports on Ω as well as its dual D' (Ω) the space distributions over the open set Ω.展开更多
Let p = (pk)k=0^∞ be a bounded sequence of positive reals, m C N and u be s sequence of nonzero terms. If x = (xk)k=0^∞ is any sequence of complex numbers we write Δ(m)x for the sequence of the m th order dif...Let p = (pk)k=0^∞ be a bounded sequence of positive reals, m C N and u be s sequence of nonzero terms. If x = (xk)k=0^∞ is any sequence of complex numbers we write Δ(m)x for the sequence of the m th order differences of x and Δu^(m)X = {x=(x)k=0^∞ uΔ(m)x ∈ X} for any set X of sequences. We determine the α-, β- and γ-duals of the sets Δμ^(m)X for X=co(p),c(p),l∞(p) and characterize some matrix transformations between these spaces Δ^(m)X.展开更多
With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an e...With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an external emotional dictionary to select appropriate emotional words to add to the response or concatenate emotional tags and semantic features in the decoding step to generate appropriate responses.However,selecting emotional words from a fixed emotional dictionary may result in loss of the diversity and consistency of the response.We propose a semantic and emotion-based dual latent variable generation model(Dual-LVG)for dialogue systems,which is able to generate appropriate emotional responses without an emotional dictionary.Different from previous work,the conditional variational autoencoder(CVAE)adopts the standard transformer structure.Then,Dual-LVG regularises the CVAE latent space by introducing a dual latent space of semantics and emotion.The content diversity and emotional accuracy of the generated responses are improved by learning emotion and semantic features respectively.Moreover,the average attention mechanism is adopted to better extract semantic features at the sequence level,and the semi-supervised attention mechanism is used in the decoding step to strengthen the fusion of emotional features of the model.Experimental results show that Dual-LVG can successfully achieve the effect of generating different content by controlling emotional factors.展开更多
Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss ...Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss the duality spaces of Fock-Sobolev spaces Fs^p,mwhen 0 〈 p 〈∞.展开更多
This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset ...This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and μ be the normalized G-invariant measure on G/H associated to the Weil's formula. Then, we present a generalized abstract framework of Fourier analysis for the Hilbert function space L^2 (G / H, μ).展开更多
In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
In this paper, we define dual curvature motion on the dual hyperbolic unit sphere H2<sub style="margin-left:-8px;">0 in the dual Lorentzian space D31 with dual signature (+,+-) . We carry the obtained ...In this paper, we define dual curvature motion on the dual hyperbolic unit sphere H2<sub style="margin-left:-8px;">0 in the dual Lorentzian space D31 with dual signature (+,+-) . We carry the obtained results to the Lorentzian line space R3<sub style="margin-left:-8px;">1 by means of Study mapping. Then we make an analysis of the orbits during the dual hyperbolic spherical curvature motion. Finally, we find some line congruences, the family of ruled surfaces and ruled surfaces in R3<sub style="margin-left:-8px;">1.展开更多
In this work,we give some criteria of the weakly compact sets and a representation theorem of Riesz's type in Musielak sequence spaces using the ideas and techniques of sequence spaces and Musielak function.Finall...In this work,we give some criteria of the weakly compact sets and a representation theorem of Riesz's type in Musielak sequence spaces using the ideas and techniques of sequence spaces and Musielak function.Finally,as an immediate consequence of the criteria considered in this paper,the criteria of the weakly compact sets of Orlicz sequence spaces are deduced.展开更多
The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, ...The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, a new type of Campanato spaces for B-valued martingales is introduced and the classical technique of atomic decompositions is improved. Some results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of the underlying Banach space.展开更多
A precise background theory of computational mechanics is formed. Saint_Venant's principle is discussed in chain model by means of this precise theory. The classical continued fraction is developed into operator c...A precise background theory of computational mechanics is formed. Saint_Venant's principle is discussed in chain model by means of this precise theory. The classical continued fraction is developed into operator continued fraction to be the constrictive formulation of the chain model. The decay of effect of a self_equilibrated system of forces in chain model is decided by the convergence of operator continued fraction, so the reasonable part of Saint_Venant's principle is described as the convergence of operator continued fraction. In case of divergence the effect of a self_equilibrated system of forces may be non_zero at even infinite distant sections, so Saint_Venant's principle is not a common principle.展开更多
In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund ...In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund space |Np^θ|k taking Norlund matrix in place of Cesaro matrix, and also examine some topological structures, α-β-γ-duals and the Schauder base of this space. Further we characterize certain matrix operators on that space and determine their operator norms, and so extend some well-known results.展开更多
With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual ...With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied.展开更多
Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a loca...Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).展开更多
In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces....In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.展开更多
Norming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that th...Norming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that the dual of a Banach space X contains a norming subspace isomorphic to l1 provided that the following two conditions are satisfied: (1) X* contains a subspace isomorphic to l1; and (2) X* contains a separable norming subspace.展开更多
Let D={z∈: |z|【1} and φ be a normal function on [0, 1). For p∈(0, 1) such a function φ is used to define a Bergman space A^p(φ) on D with weight φ~p(|·|)/(1-|·|~2). In this paper, the dual space of A...Let D={z∈: |z|【1} and φ be a normal function on [0, 1). For p∈(0, 1) such a function φ is used to define a Bergman space A^p(φ) on D with weight φ~p(|·|)/(1-|·|~2). In this paper, the dual space of A^p(φ) is given, four characteristics of Carleson measure on A^p(φ) are obtained. Moreover, as an application, three sequence interpolation theorems in A^p(φ) are derived.展开更多
In this paper, by using weak dissipative type conditions and weak noncompact conditions, we give the existence of weak solutions of differential equations in weak complete Banach spaces.
The sequence space bvp consisting of all sequences (xk) such that (xk -xk-1) belongs to the space gp has recently been introduced by Basar and Altay [Ukrainian Math. J., 55(1), 136-147(2003)]; where 1 ≤ p ≤ ...The sequence space bvp consisting of all sequences (xk) such that (xk -xk-1) belongs to the space gp has recently been introduced by Basar and Altay [Ukrainian Math. J., 55(1), 136-147(2003)]; where 1 ≤ p ≤ ∞. In the present paper, some results concerning with the continuous dual and f-dual, and the AD-property of the sequence space bvp have been given and the norm of the difference operator A acting on the sequence space bvp has been found. The fine spectrum with respect to the Goldberg's classification of the difference operator △ over the sequence space bvp has been determined, where 1≤p〈∞.展开更多
文摘Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.
文摘In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topological vector spaces and it is in this context that we have chosen to present this work. We are interested in the topology of its spaces and in the topologies of their dual spaces. The first part, we presented the fundamental topological properties of topological vector spaces. The second part, we studied Frechet spaces and particularly the space S(R<sup>n</sup>) of functions of class C<sup>∞ </sup>on R<sup>n</sup> which are as well as all their rapidly decreasing partial derivatives. We have also studied its dual S'(Rn</sup>) the space of tempered distributions. The last part aims to define a topological structure on an increasing union of Frechet spaces called inductive limit of Frechet spaces. We study in particular the space D(Ω) of functions of class C<sup>∞</sup> with compact supports on Ω as well as its dual D' (Ω) the space distributions over the open set Ω.
基金the German DAAD Foundation(German Academic Exchange Service)Grant No.911 103 012 8the Research Project #1232 of the Serbian Ministry of Science,Technology and Development
文摘Let p = (pk)k=0^∞ be a bounded sequence of positive reals, m C N and u be s sequence of nonzero terms. If x = (xk)k=0^∞ is any sequence of complex numbers we write Δ(m)x for the sequence of the m th order differences of x and Δu^(m)X = {x=(x)k=0^∞ uΔ(m)x ∈ X} for any set X of sequences. We determine the α-, β- and γ-duals of the sets Δμ^(m)X for X=co(p),c(p),l∞(p) and characterize some matrix transformations between these spaces Δ^(m)X.
基金Fundamental Research Funds for the Central Universities of China,Grant/Award Number:CUC220B009National Natural Science Foundation of China,Grant/Award Numbers:62207029,62271454,72274182。
文摘With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an external emotional dictionary to select appropriate emotional words to add to the response or concatenate emotional tags and semantic features in the decoding step to generate appropriate responses.However,selecting emotional words from a fixed emotional dictionary may result in loss of the diversity and consistency of the response.We propose a semantic and emotion-based dual latent variable generation model(Dual-LVG)for dialogue systems,which is able to generate appropriate emotional responses without an emotional dictionary.Different from previous work,the conditional variational autoencoder(CVAE)adopts the standard transformer structure.Then,Dual-LVG regularises the CVAE latent space by introducing a dual latent space of semantics and emotion.The content diversity and emotional accuracy of the generated responses are improved by learning emotion and semantic features respectively.Moreover,the average attention mechanism is adopted to better extract semantic features at the sequence level,and the semi-supervised attention mechanism is used in the decoding step to strengthen the fusion of emotional features of the model.Experimental results show that Dual-LVG can successfully achieve the effect of generating different content by controlling emotional factors.
基金The NSF(11501136,11271092)of Chinathe Key Discipline Construction Project of Subject Groups Focus on Mathematics+1 种基金Information Science in the Construction Project(4601-2015)of the High-level University of Guangdong Provincethe Project(HL02-1517)for the New Talent of Guangzhou University
文摘Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss the duality spaces of Fock-Sobolev spaces Fs^p,mwhen 0 〈 p 〈∞.
文摘This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and μ be the normalized G-invariant measure on G/H associated to the Weil's formula. Then, we present a generalized abstract framework of Fourier analysis for the Hilbert function space L^2 (G / H, μ).
文摘In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
文摘In this paper, we define dual curvature motion on the dual hyperbolic unit sphere H2<sub style="margin-left:-8px;">0 in the dual Lorentzian space D31 with dual signature (+,+-) . We carry the obtained results to the Lorentzian line space R3<sub style="margin-left:-8px;">1 by means of Study mapping. Then we make an analysis of the orbits during the dual hyperbolic spherical curvature motion. Finally, we find some line congruences, the family of ruled surfaces and ruled surfaces in R3<sub style="margin-left:-8px;">1.
基金Supported by the National Natural Science Foundation of China(Grant No.11771273)。
文摘In this work,we give some criteria of the weakly compact sets and a representation theorem of Riesz's type in Musielak sequence spaces using the ideas and techniques of sequence spaces and Musielak function.Finally,as an immediate consequence of the criteria considered in this paper,the criteria of the weakly compact sets of Orlicz sequence spaces are deduced.
文摘The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, a new type of Campanato spaces for B-valued martingales is introduced and the classical technique of atomic decompositions is improved. Some results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of the underlying Banach space.
文摘A precise background theory of computational mechanics is formed. Saint_Venant's principle is discussed in chain model by means of this precise theory. The classical continued fraction is developed into operator continued fraction to be the constrictive formulation of the chain model. The decay of effect of a self_equilibrated system of forces in chain model is decided by the convergence of operator continued fraction, so the reasonable part of Saint_Venant's principle is described as the convergence of operator continued fraction. In case of divergence the effect of a self_equilibrated system of forces may be non_zero at even infinite distant sections, so Saint_Venant's principle is not a common principle.
基金Supported by Pamukkale University Scientific Research Pro jects Coordinatorship(Grant No.2014FBE061)
文摘In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund space |Np^θ|k taking Norlund matrix in place of Cesaro matrix, and also examine some topological structures, α-β-γ-duals and the Schauder base of this space. Further we characterize certain matrix operators on that space and determine their operator norms, and so extend some well-known results.
文摘With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied.
基金supported by National Natural Science Foundation of China(Grant No.11171027)Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).
基金supported by National Natural Science Foundation of China(Grant No.11271092)Doctoral Fund of Ministry of Education of China(Grant No.20114410110001)
文摘In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.
文摘Norming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that the dual of a Banach space X contains a norming subspace isomorphic to l1 provided that the following two conditions are satisfied: (1) X* contains a subspace isomorphic to l1; and (2) X* contains a separable norming subspace.
基金Supported by the Doctoral Program Foundation of Institute of Higher Education, P.R. China.
文摘Let D={z∈: |z|【1} and φ be a normal function on [0, 1). For p∈(0, 1) such a function φ is used to define a Bergman space A^p(φ) on D with weight φ~p(|·|)/(1-|·|~2). In this paper, the dual space of A^p(φ) is given, four characteristics of Carleson measure on A^p(φ) are obtained. Moreover, as an application, three sequence interpolation theorems in A^p(φ) are derived.
基金Project is supportedby the Natural Science Foundation of Shangdong Province.
文摘In this paper, by using weak dissipative type conditions and weak noncompact conditions, we give the existence of weak solutions of differential equations in weak complete Banach spaces.
文摘The sequence space bvp consisting of all sequences (xk) such that (xk -xk-1) belongs to the space gp has recently been introduced by Basar and Altay [Ukrainian Math. J., 55(1), 136-147(2003)]; where 1 ≤ p ≤ ∞. In the present paper, some results concerning with the continuous dual and f-dual, and the AD-property of the sequence space bvp have been given and the norm of the difference operator A acting on the sequence space bvp has been found. The fine spectrum with respect to the Goldberg's classification of the difference operator △ over the sequence space bvp has been determined, where 1≤p〈∞.