自动调制识别是现代通信系统中一项重要技术。为提高通信系统对不同调制信号间的识别性能,文中首先探索了包含11类调制信号的公开数据集RML2016.10A上原始同相正交(In-phase and Quadrature,IQ)格式数据和经过数据预处理后的幅度和相位(...自动调制识别是现代通信系统中一项重要技术。为提高通信系统对不同调制信号间的识别性能,文中首先探索了包含11类调制信号的公开数据集RML2016.10A上原始同相正交(In-phase and Quadrature,IQ)格式数据和经过数据预处理后的幅度和相位(Amplitude and Phase,AP)格式数据的差异;随后,依据原始IQ格式数据和AP格式数据在特征提取过程中对局部相关性及时序特征敏感性的差异,设计了针对空间特征提取的SFE-Block模块、针对长期依赖关系提取的TFE-Block模块,以及联合时空特征提取模块STFE-Block,并将前两者的输出特征作为STFE-Block模块输出特征的重要补充进行特征融合,以全连接(Fully Connected)层负责最终分类。实验结果表明,本模型在数据集RML2016.10A上表现良好。当信噪比(Signal to Noise Ratio,SNR)低于-8 dB时,平均识别精度比其他模型提升7%,而SNR在0~18 dB时,平均识别精度比其他模型提高1%~8%,且在SNR为16 dB时,最高识别精度达92.95%。此外,在RML2016.10B数据集上重复了实验以检验模型泛化性,所得结果同样最优,且当SNR为12 dB时,最高识别精度达到93.6%。展开更多
不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采...不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采用双流RGB-D图像作为双输入,利用ResNet网络中的残差结构改进EfficientNet基线网络结构,提出了一种基于改进R-EfficientNet的双流RGB-D多模态信息融合的坐姿识别方法。试验结果表明,提出的R-EfficientNet融合方法模型对8种坐姿的识别均值平均精度(mean average precision,mAP)达到了98.5%。与CNN、Vgg16、ResNet18、EfficientNet、RGB-D不同的输入方法相比,所提方法获得了最高的识别率。该方法不仅可以用于坐姿客观监测,具有医学和社会效益,此外还为人体工学研究者们提供改进办公家具的方案。展开更多
针对现有基于端到端方面的情感分析(E2E-ABSA)方法研究中没有充分利用文本信息的不足,提出了一种基于BERT与融合词性、句法信息(lexical and syntactic information,LSI)的模型LSI-BERT。使用BERT嵌入层和TFM特征提取器来提取语义信息,...针对现有基于端到端方面的情感分析(E2E-ABSA)方法研究中没有充分利用文本信息的不足,提出了一种基于BERT与融合词性、句法信息(lexical and syntactic information,LSI)的模型LSI-BERT。使用BERT嵌入层和TFM特征提取器来提取语义信息,并通过工业级自然语言处理工具SpaCy提取词性信息,引入两个权重因子α和β对语义与词性信息进行融合;采用图注意网络(graph attention networks,GAT)根据句法依存树生成的邻接矩阵进行句法依存信息的提取;利用双流注意力网络针对句法依存信息和融合了词性信息的文本信息进行融合,使这两种信息实现更好的交互。实验结果表明,模型在三个常用基准数据集上的性能优于当前代表模型。展开更多
文摘自动调制识别是现代通信系统中一项重要技术。为提高通信系统对不同调制信号间的识别性能,文中首先探索了包含11类调制信号的公开数据集RML2016.10A上原始同相正交(In-phase and Quadrature,IQ)格式数据和经过数据预处理后的幅度和相位(Amplitude and Phase,AP)格式数据的差异;随后,依据原始IQ格式数据和AP格式数据在特征提取过程中对局部相关性及时序特征敏感性的差异,设计了针对空间特征提取的SFE-Block模块、针对长期依赖关系提取的TFE-Block模块,以及联合时空特征提取模块STFE-Block,并将前两者的输出特征作为STFE-Block模块输出特征的重要补充进行特征融合,以全连接(Fully Connected)层负责最终分类。实验结果表明,本模型在数据集RML2016.10A上表现良好。当信噪比(Signal to Noise Ratio,SNR)低于-8 dB时,平均识别精度比其他模型提升7%,而SNR在0~18 dB时,平均识别精度比其他模型提高1%~8%,且在SNR为16 dB时,最高识别精度达92.95%。此外,在RML2016.10B数据集上重复了实验以检验模型泛化性,所得结果同样最优,且当SNR为12 dB时,最高识别精度达到93.6%。
文摘不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采用双流RGB-D图像作为双输入,利用ResNet网络中的残差结构改进EfficientNet基线网络结构,提出了一种基于改进R-EfficientNet的双流RGB-D多模态信息融合的坐姿识别方法。试验结果表明,提出的R-EfficientNet融合方法模型对8种坐姿的识别均值平均精度(mean average precision,mAP)达到了98.5%。与CNN、Vgg16、ResNet18、EfficientNet、RGB-D不同的输入方法相比,所提方法获得了最高的识别率。该方法不仅可以用于坐姿客观监测,具有医学和社会效益,此外还为人体工学研究者们提供改进办公家具的方案。