This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is propos...Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Partic...The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.展开更多
An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear bu...An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.展开更多
The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-depen...The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.展开更多
This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinea...This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.展开更多
The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one....The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one.Both the inherent and the intentional time delays are included.The former mainly comes from signal acquiring and processing,computing,and applying the actuation force,and its value is fixed.The latter is introduced in the controller,and its value is actively adjustable.Firstly,the mechanical model is established and the frequency response equations are obtained.The regions of stability are delineated in the plane of control parameters.Secondly,the design scheme of control parameters is performed to help select the values of the feedback gain and time delay.Thirdly,the experimental studies are conducted.Effects of both negative and positive feedback control are investigated.Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption.Moreover,the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails.The experimental results are in good agreement with the theoretical predictions and numerical simulations.展开更多
The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is propo...The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is proposed for a memory proportional and integral (PI) feedback controller with adaptation to distributed time-delay. The feedback controller with memory simultaneously contains the current state and the past distributed information of the addressed systems. The design for adaptation law to distributed delay is very concise. The controller can be derived by solving a set of linear matrix inequalities (LMIs). Two numerical examples are given to illustrate the effectiveness of the design method.展开更多
The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The fi...The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.展开更多
This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the ex...This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.展开更多
This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphi...This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.展开更多
In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabili...In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.展开更多
In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurca...In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurcation condition of the new SAM is derived through linear analysis and bifurcation analysis,and then accurate range of stable region is obtained.In order to explore the mechanism of the influence of multiple parameter combinations on the stability of controlled systems,a definite integral stabilization method is provided to determine the stable interval of time delay and feedback gain.Numerical simulations are explored to verify the feasibility and effectiveness of the proposed model,which also demonstrate that feedback gain and delay are two key factors to alleviate traffic congestion in the SAM.展开更多
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli...The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金the National Natural Science Foundation of China (Grants 11572224 and 11772229).
文摘Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10247005,70071047,and 19875080
文摘The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.
基金the National Natural Science Foundation of China (Nos. 10332030 and 10772159)the Research Fund for theDoctoral Program of Higher Education of China (No. 20060335125)
文摘An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.
基金This work was supported by the National Natural Science Foundation of China (No. 60024301)Natural Science Fund of Shanxi Province of China(No. 20051032)
文摘The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.
基金supported by the fund of Beijing Municipal Commission of Education(Nos.22019821001 and KM202210017001)the Natural Science Foundation of Henan Province(No.222300420253).
文摘This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.
基金supported by the State Key Program of National Natural Science Foundation of China(grant No. 11032009)National Natural Science Foundation of China(grant No.11272236)
文摘The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one.Both the inherent and the intentional time delays are included.The former mainly comes from signal acquiring and processing,computing,and applying the actuation force,and its value is fixed.The latter is introduced in the controller,and its value is actively adjustable.Firstly,the mechanical model is established and the frequency response equations are obtained.The regions of stability are delineated in the plane of control parameters.Secondly,the design scheme of control parameters is performed to help select the values of the feedback gain and time delay.Thirdly,the experimental studies are conducted.Effects of both negative and positive feedback control are investigated.Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption.Moreover,the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails.The experimental results are in good agreement with the theoretical predictions and numerical simulations.
基金supported by the National Natural Science Foundation of China (60804017 60835001+3 种基金 60904020 60974120)the Foundation of Doctor (20070286039 20070286001)
文摘The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is proposed for a memory proportional and integral (PI) feedback controller with adaptation to distributed time-delay. The feedback controller with memory simultaneously contains the current state and the past distributed information of the addressed systems. The design for adaptation law to distributed delay is very concise. The controller can be derived by solving a set of linear matrix inequalities (LMIs). Two numerical examples are given to illustrate the effectiveness of the design method.
基金Project supported by the National Natural Science Foundation of China (Nos. 12122208, 11972254,and 11932015)。
文摘The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.
文摘This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.
文摘This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China (61863022)the Natural Science Foundation of Gansu Province(20JR10RA329)Scientific Research and Innovation Fund Project of Gansu University of Chinese Medicine in 2019 (2019KCYB-10)。
文摘In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.
基金supported by the National Key Research and Development Program of China(No.2017YFE9134700)the Natural Science Foundation of Zhejiang Province,China(No.LY22G010001)+3 种基金the Program of Humanities and Social Science of Education Ministry of China(No.20YJA630008)the Ningbo Natural Science Foundation of China(Nos.2021J235 and 2021J111)the Fund of Healthy&Intelligent Kitchen Engineering Research Center of Zhejiang Provincethe K.C.Wong Magna Fund in Ningbo University,China.
文摘In order to alleviate unstable factor-caused bifurcation and reduce oscillations in traffic flow,a feedback control with consideration of time delay is designed for the solid angle model(SAM).The stability and bifurcation condition of the new SAM is derived through linear analysis and bifurcation analysis,and then accurate range of stable region is obtained.In order to explore the mechanism of the influence of multiple parameter combinations on the stability of controlled systems,a definite integral stabilization method is provided to determine the stable interval of time delay and feedback gain.Numerical simulations are explored to verify the feasibility and effectiveness of the proposed model,which also demonstrate that feedback gain and delay are two key factors to alleviate traffic congestion in the SAM.
基金supported by National Natural Science Foundation of China (Grant No. 51075112,Grant No. 51175135)
文摘The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems.