The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the cu...The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 ~C and 2.5 pm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.展开更多
The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst...The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.展开更多
This paper presents air gap aperture coupled microstrip antenna for dual-band operation over the frequency range of (2.9 to 6.0 GHz). This antenna differs from any other microstrip antenna with their feeding structure...This paper presents air gap aperture coupled microstrip antenna for dual-band operation over the frequency range of (2.9 to 6.0 GHz). This antenna differs from any other microstrip antenna with their feeding structure of the radiating patch element. Input signal couples to the radiating patch trough the aperture that exists on the ground plane of microstrip feed line. The dual-band achieved by variation of air gap [2 mm to 6 mm] between single patch antenna and aper-ture coupled microstrip antenna. The main advantage of this type antenna is increased the bandwidth of the antenna as compared to a single layered patch antenna. The two resonant frequencies can vary over a wide frequency range and the input impedance is easily matched for both frequencies. The obtain ratios of resonance frequencies are variable from 2.1 GHz to 1.1 GHz with increasing the air gap between single patch and aperture coupled microstrip antenna. The measured return loss [–14 dB] exhibits an impedance bandwidth of 35%. The input impedance and VSWR return loss have been measured with the help of Network analyzer.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA040701)
文摘The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 ~C and 2.5 pm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.
文摘The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.
文摘This paper presents air gap aperture coupled microstrip antenna for dual-band operation over the frequency range of (2.9 to 6.0 GHz). This antenna differs from any other microstrip antenna with their feeding structure of the radiating patch element. Input signal couples to the radiating patch trough the aperture that exists on the ground plane of microstrip feed line. The dual-band achieved by variation of air gap [2 mm to 6 mm] between single patch antenna and aper-ture coupled microstrip antenna. The main advantage of this type antenna is increased the bandwidth of the antenna as compared to a single layered patch antenna. The two resonant frequencies can vary over a wide frequency range and the input impedance is easily matched for both frequencies. The obtain ratios of resonance frequencies are variable from 2.1 GHz to 1.1 GHz with increasing the air gap between single patch and aperture coupled microstrip antenna. The measured return loss [–14 dB] exhibits an impedance bandwidth of 35%. The input impedance and VSWR return loss have been measured with the help of Network analyzer.