The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei...The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.展开更多
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.21203008,21975025,12274025)the Hainan Province Science and Technology Special Fund(Nos.ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.