Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh env...Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron fl ow that occurred during the algae were stressed with dif ferent light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three dif ferent CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support effi cient photosynthesis, the potential roles of CEF might also include the regulation of dif ferent photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone(PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ + pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an ef fective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the dif ferent mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.展开更多
基金Supported by the National Natural Science Foundation of China(No.41176134)the Laboratory for Marine Biology and Biotechnology,Qingdao National Laboratory for Marine Science and Technology,the Prospective Joint Research Project of Jiangsu Province(No.BY2011188)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB411908)the National Marine Public Welfare Research Project(Nos.201105023-8,201105008-2)
文摘Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron fl ow that occurred during the algae were stressed with dif ferent light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three dif ferent CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support effi cient photosynthesis, the potential roles of CEF might also include the regulation of dif ferent photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone(PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ + pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an ef fective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the dif ferent mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.