Efficient and accurate Chebyshev dual-Petrov-Galerkin methods for solving first-order equation,third-order equation,third-order KdV equation and fifth-order Kawahara equa-tion are proposed.Some Sobolev bi-orthogonal b...Efficient and accurate Chebyshev dual-Petrov-Galerkin methods for solving first-order equation,third-order equation,third-order KdV equation and fifth-order Kawahara equa-tion are proposed.Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions are expanded as an infinite and truncated Fourier-like series,respec-tively.Numerical experiments illustrate the effectiveness of the suggested approaches.展开更多
基金This work was supported by Natural Science Foundation of China(Nos.11571238,11601332 and 11871043).
文摘Efficient and accurate Chebyshev dual-Petrov-Galerkin methods for solving first-order equation,third-order equation,third-order KdV equation and fifth-order Kawahara equa-tion are proposed.Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions are expanded as an infinite and truncated Fourier-like series,respec-tively.Numerical experiments illustrate the effectiveness of the suggested approaches.