Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further...Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.展开更多
The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the co...The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.展开更多
This paper proposedmethod that combined transmission path analysis(TPA)and empirical mode decomposition(EMD)envelope analysis to solve the vibration problemof an industrial robot.Firstly,the deconvolution filter timed...This paper proposedmethod that combined transmission path analysis(TPA)and empirical mode decomposition(EMD)envelope analysis to solve the vibration problemof an industrial robot.Firstly,the deconvolution filter timedomain TPA method is proposed to trace the source along with the time variation.Secondly,the TPA method positioned themain source of robotic vibration under typically different working conditions.Thirdly,independent vibration testing of the Rotate Vector(RV)reducer is conducted under different loads and speeds,which are key components of an industrial robot.The method of EMD and Hilbert envelope was used to extract the fault feature of the RV reducer.Finally,the structural problems of the RV reducer were summarized.The vibration performance of industrial robots was improved through the RV reducer optimization.From the whole industrial robot to the local RV Reducer and then to the internal microstructure of the reducer,the source of defect information is traced accurately.Experimental results showed that the TPA and EMD hybrid methods were more accurate and efficient than traditional time-frequency analysis methods to solve industrial robot vibration problems.展开更多
With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding...With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding,handling,etc.,and have a great role in these sectors.Recently,the robotic technology is developing towards high precision,high intelligence.Robot calibration technology has a great significance to improve the accuracy of robot.However,it has much work to be done in the identification of robot parameters.The parameter identification work of existing serial and parallel robots is introduced.On the one hand,it summarizes the methods for parameter calibration and discusses their advantages and disadvantages.On the other hand,the application of parameter identification is introduced.This overview has a great reference value for robot manufacturers to choose proper identification method,points further research areas for researchers.Finally,this paper analyzes the existing problems in robot calibration,which may be worth researching in the future.展开更多
Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence.However,the low structural stiffness of a robot significantly affects its positional accuracy and the...Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence.However,the low structural stiffness of a robot significantly affects its positional accuracy and the machining quality of its operation equipment.Studying robot stiffness characteristics and optimization methods is an effective method of improving the stiffness performance of a robot.Accordingly,aiming at the poor accuracy of stiffness modeling caused by approximating the stiffness of each joint as a constant,a variable stiffness identification method is proposed based on space gridding.Subsequently,a task-oriented axial stiffness evaluation index is proposed to quantitatively assess the stiffness performance in the machining direction.In addition,by analyzing the redundant kinematic characteristics of the robot machining system,a configuration optimization method is further developed to maximize the index.For numerous points or trajectory-processing tasks,a configuration smoothing strategy is proposed to rapidly acquire optimized configurations.Finally,experiments on a KR500 robot were conducted to verify the feasibility and validity of the proposed stiffness identification and configuration optimization methods.展开更多
In view of the lack of patent big data in research on technology foresight in the industrial robot field, this paper introduces an improved method based on patent mining and knowledge map. Firstly, SAO structure is ex...In view of the lack of patent big data in research on technology foresight in the industrial robot field, this paper introduces an improved method based on patent mining and knowledge map. Firstly, SAO structure is extracted from selected patents, secondly, the similarity between patents is calculated based on extracted SAO structure, thirdly, patent network and patent map are drawn based on calculated patent similarity matrix, technology evolution process and future trends of industrial robot are summarized from patent network, and future potential technology opportunities are predicted based on technological vacancies identified from patent map. Finally, this paper identifies six key technical areas and four potential technical opportunities in the field of the industrial robot.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.展开更多
Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial...Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.展开更多
In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production pr...In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production processes.In this scenario,continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry.For example,6G could play a prominent role due to its human-centric view of the industrial domains.In particular,its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin(DT)-and eXtended Reality(XR)-based telepresence.In this work,a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed.The approach encompasses demanding data flows(e.g.,point cloud-based streaming of collaborating users and robotic environment),with network latency and bandwidth constraints.Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.展开更多
In order to further improve the serial ports communication mode of the general Flex Pendant for industrial robot,a multiple serial communication mode is put forward. It is used to meet the stability of data transmissi...In order to further improve the serial ports communication mode of the general Flex Pendant for industrial robot,a multiple serial communication mode is put forward. It is used to meet the stability of data transmission,transmission distance,transmission speed,anti-interference and cost-effective. Using ADUM1201 single direction dual channel digital isolator,two pieces of MAX13487 E and a piece of MAX3232 chip to transmit data and files, and to control chip’ s electrical level. Selecting the RS232, RS422 and RS485 communication mode,the serial ports of the general Flex Pendant of industrial robot is optimized.展开更多
This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly t...This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.展开更多
To optimize the working time of the flexible polishing industrial robot for watchcases,the polishing efficiency should be improved.Based on the quintic B-spline fitting curve trajectory planning method associated with...To optimize the working time of the flexible polishing industrial robot for watchcases,the polishing efficiency should be improved.Based on the quintic B-spline fitting curve trajectory planning method associated with the optimal time interval and the trajectory point angle,the trajectory route of the flexible polishing industrial robot for case parts was optimized by the Matlab software.The operation time of the flexible polishing industrial robot could reach the optimal level.The joints of the robot can be cooperated with each other to ensure that the motion track of the end-effector of the robot arm is closer to the expected motion track.Based on the Adams software,the obtained trajectory curve of multi-objective optimization was simulated,which verified the trajectory fitted after multi-objective optimization.The angular acceleration and angular plus acceleration curves were improved.Theoretical guidance was carried out for the subsequent experiment by Matlab and Adams simulation analysis.展开更多
This paper proposes a feasible force/position control method for industrial robots utilized for such tasks as grinding, polishing, deburring, and so on. Specifically, an adaptive force/position control strategy is des...This paper proposes a feasible force/position control method for industrial robots utilized for such tasks as grinding, polishing, deburring, and so on. Specifically, an adaptive force/position control strategy is designed in this paper which regulates the contact force between a robot and a workpiece to reach any given set-point exponentially fast, and enables the robot to follow a chosen trajectory simultaneously without requiring prior knowledge of the system parameters. The stability of the closed-loop system is analyzed by Lyapunov techniques. To test the validity of the force/position control method, some simulation results are first collected for the closed-loop system. Furthermore, some experiments are implemented on a 5DOF (degree of freedom) industrial robot for the constructed adaptive force controller. Both simulation and experiment results demonstrate the superior performance of the designed adaptive force/position control strategy.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.展开更多
With the rising of the manufacturing industry in our neighboring countries,China no longer has advantages in manufacturing sector.New development situation and tasks make it extremely urgent to establish a new manufac...With the rising of the manufacturing industry in our neighboring countries,China no longer has advantages in manufacturing sector.New development situation and tasks make it extremely urgent to establish a new manufacturing system featuring standardization,modularization,network and intelligence.Therefore,research on industrial robot technology is of great practical significance.It is believed that in the near future,industrial robots will become an important driving force for the transformation and upgrade of China’s manufacturing industry.展开更多
文摘Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.
基金supported in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 21KJA470007。
文摘The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.
基金supported by Natural Science Foundation of Hunan Province,(Grant No.2022JJ30147)the National Natural Science Foundation of China (Grant No.51805155)the Foundation for Innovative Research Groups of National Natural Science Foundation of China (Grant No.51621004).
文摘This paper proposedmethod that combined transmission path analysis(TPA)and empirical mode decomposition(EMD)envelope analysis to solve the vibration problemof an industrial robot.Firstly,the deconvolution filter timedomain TPA method is proposed to trace the source along with the time variation.Secondly,the TPA method positioned themain source of robotic vibration under typically different working conditions.Thirdly,independent vibration testing of the Rotate Vector(RV)reducer is conducted under different loads and speeds,which are key components of an industrial robot.The method of EMD and Hilbert envelope was used to extract the fault feature of the RV reducer.Finally,the structural problems of the RV reducer were summarized.The vibration performance of industrial robots was improved through the RV reducer optimization.From the whole industrial robot to the local RV Reducer and then to the internal microstructure of the reducer,the source of defect information is traced accurately.Experimental results showed that the TPA and EMD hybrid methods were more accurate and efficient than traditional time-frequency analysis methods to solve industrial robot vibration problems.
基金supported in part by the National Natural Science Foundation of China(61772493)in part by the Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)in part by the Natural Science Foundation of Chongqing(cstc2019jcyjjq X0013)。
文摘With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding,handling,etc.,and have a great role in these sectors.Recently,the robotic technology is developing towards high precision,high intelligence.Robot calibration technology has a great significance to improve the accuracy of robot.However,it has much work to be done in the identification of robot parameters.The parameter identification work of existing serial and parallel robots is introduced.On the one hand,it summarizes the methods for parameter calibration and discusses their advantages and disadvantages.On the other hand,the application of parameter identification is introduced.This overview has a great reference value for robot manufacturers to choose proper identification method,points further research areas for researchers.Finally,this paper analyzes the existing problems in robot calibration,which may be worth researching in the future.
基金National Natural Science Foundation of China(Grant No.51875287)National Defense Basic Scientific Research Program of China(Grant No.JCKY2018605C002)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20190417).
文摘Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence.However,the low structural stiffness of a robot significantly affects its positional accuracy and the machining quality of its operation equipment.Studying robot stiffness characteristics and optimization methods is an effective method of improving the stiffness performance of a robot.Accordingly,aiming at the poor accuracy of stiffness modeling caused by approximating the stiffness of each joint as a constant,a variable stiffness identification method is proposed based on space gridding.Subsequently,a task-oriented axial stiffness evaluation index is proposed to quantitatively assess the stiffness performance in the machining direction.In addition,by analyzing the redundant kinematic characteristics of the robot machining system,a configuration optimization method is further developed to maximize the index.For numerous points or trajectory-processing tasks,a configuration smoothing strategy is proposed to rapidly acquire optimized configurations.Finally,experiments on a KR500 robot were conducted to verify the feasibility and validity of the proposed stiffness identification and configuration optimization methods.
文摘In view of the lack of patent big data in research on technology foresight in the industrial robot field, this paper introduces an improved method based on patent mining and knowledge map. Firstly, SAO structure is extracted from selected patents, secondly, the similarity between patents is calculated based on extracted SAO structure, thirdly, patent network and patent map are drawn based on calculated patent similarity matrix, technology evolution process and future trends of industrial robot are summarized from patent network, and future potential technology opportunities are predicted based on technological vacancies identified from patent map. Finally, this paper identifies six key technical areas and four potential technical opportunities in the field of the industrial robot.
基金Foundation of the Robotics Laboratory, Chinese Academy of Sciences (No: RL200002)
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.
基金supported by the European Union within the framework of the“National Laboratory for Autonomous Systems”(No.RRF-2.3.1-212022-00002)the Hungarian“Research on prime exploitation of the potential provided by the industrial digitalisation(No.ED-18-2-2018-0006)”the“Research on cooperative production and logistics systems to support a competitive and sustainable economy(No.TKP2021-NKTA-01)”。
文摘Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.
基金funded by the European Commission through the H2020 project Hexa-X(Grant Agreement no.101015956).
文摘In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production processes.In this scenario,continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry.For example,6G could play a prominent role due to its human-centric view of the industrial domains.In particular,its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin(DT)-and eXtended Reality(XR)-based telepresence.In this work,a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed.The approach encompasses demanding data flows(e.g.,point cloud-based streaming of collaborating users and robotic environment),with network latency and bandwidth constraints.Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.
基金supported by the National Key Technology R&D Program(2015BAK06B04)the key technologies R&D Program of Tianjin(14ZCZDSF00022)
文摘In order to further improve the serial ports communication mode of the general Flex Pendant for industrial robot,a multiple serial communication mode is put forward. It is used to meet the stability of data transmission,transmission distance,transmission speed,anti-interference and cost-effective. Using ADUM1201 single direction dual channel digital isolator,two pieces of MAX13487 E and a piece of MAX3232 chip to transmit data and files, and to control chip’ s electrical level. Selecting the RS232, RS422 and RS485 communication mode,the serial ports of the general Flex Pendant of industrial robot is optimized.
文摘This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.
基金Science and Technology Foundation of Jiangxi Province,China(No.TGS2018-01-02)。
文摘To optimize the working time of the flexible polishing industrial robot for watchcases,the polishing efficiency should be improved.Based on the quintic B-spline fitting curve trajectory planning method associated with the optimal time interval and the trajectory point angle,the trajectory route of the flexible polishing industrial robot for case parts was optimized by the Matlab software.The operation time of the flexible polishing industrial robot could reach the optimal level.The joints of the robot can be cooperated with each other to ensure that the motion track of the end-effector of the robot arm is closer to the expected motion track.Based on the Adams software,the obtained trajectory curve of multi-objective optimization was simulated,which verified the trajectory fitted after multi-objective optimization.The angular acceleration and angular plus acceleration curves were improved.Theoretical guidance was carried out for the subsequent experiment by Matlab and Adams simulation analysis.
基金Supported by the National Natural Science Foundation of China (60875055), the Program for New Century Excellent Talents in University (NCET-06- 0210) and the Natural Science Foundation of Tianjin (08JCZDJC21800).
文摘This paper proposes a feasible force/position control method for industrial robots utilized for such tasks as grinding, polishing, deburring, and so on. Specifically, an adaptive force/position control strategy is designed in this paper which regulates the contact force between a robot and a workpiece to reach any given set-point exponentially fast, and enables the robot to follow a chosen trajectory simultaneously without requiring prior knowledge of the system parameters. The stability of the closed-loop system is analyzed by Lyapunov techniques. To test the validity of the force/position control method, some simulation results are first collected for the closed-loop system. Furthermore, some experiments are implemented on a 5DOF (degree of freedom) industrial robot for the constructed adaptive force controller. Both simulation and experiment results demonstrate the superior performance of the designed adaptive force/position control strategy.
基金FoundationoftheRoboticsLaboratoryChineseAcademyofSciences (No :RL2 0 0 0 0 2 )
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.
文摘With the rising of the manufacturing industry in our neighboring countries,China no longer has advantages in manufacturing sector.New development situation and tasks make it extremely urgent to establish a new manufacturing system featuring standardization,modularization,network and intelligence.Therefore,research on industrial robot technology is of great practical significance.It is believed that in the near future,industrial robots will become an important driving force for the transformation and upgrade of China’s manufacturing industry.