Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating sched...To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.展开更多
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f...In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.展开更多
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ...The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.展开更多
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati...Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.展开更多
Given the limited operating ability of a single robotic arm,dual-arm collaborative operations have become increasingly prominent.Compared with the electrically driven dual-arm manipulator,due to the unknown heavy load...Given the limited operating ability of a single robotic arm,dual-arm collaborative operations have become increasingly prominent.Compared with the electrically driven dual-arm manipulator,due to the unknown heavy load,difficulty in measuring contact forces,and control complexity during the closed-chain object transportation task,the hydraulic dual-arm manipulator(HDM)faces more difficulty in accurately tracking the desired motion trajectory,which may cause object deformation or even breakage.To overcome this problem,a compliance motion control method is proposed in this paper for the HDM.The mass parameter of the unknown object is obtained by using an adaptive method based on velocity error.Due to the difficulty in obtaining the actual internal force of the object,the pressure signal from the pressure sensor of the hydraulic system is used to estimate the contact force at the end-effector(EE)of two hydraulic manipulators(HMs).Further,the estimated contact force is used to calculate the actual internal force on the object.Then,a compliance motion controller is designed for HDM closed-chain collaboration.The position and internal force errors of the object are reduced by the feedback of the position,velocity,and internal force errors of the object to achieve the effect of the compliance motion of the HDM,i.e.,to reduce the motion error and internal force of the object.The required velocity and force at the EE of the two HMs,including the position and internal force errors of the object,are inputted into separate position controllers.In addition,the position controllers of the two individual HMs are designed to enable precise motion control by using the virtual decomposition control method.Finally,comparative experiments are carried out on a hydraulic dual-arm test bench.The proposed method is validated by the experimental results,which demonstrate improved object position accuracy and reduced internal force.展开更多
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金Projects(7107111561273035)supported by the National Natural Science Foundation of China
文摘To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.
基金supported by the National Natural Science Foundation of China(11372073,11072061)。
文摘In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.
基金This work was supported by the application foundation for basic research of Jiangsu(No.BJ98057)the innovation foundation for the scientific research of Nanjing University of Aeronautics and Astronautics(No.Y0487-031)
文摘The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.
基金the National Natural Science Foundation of China (Nos. 10672040 and10372022)the Natural Science Foundation of Fujian Province of China (No. E0410008)
文摘Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.52075055 and U21A20124)the Strategic Basic Product Project from the Ministry of Industry and Information Technology,China(Grant No.TC220H064).
文摘Given the limited operating ability of a single robotic arm,dual-arm collaborative operations have become increasingly prominent.Compared with the electrically driven dual-arm manipulator,due to the unknown heavy load,difficulty in measuring contact forces,and control complexity during the closed-chain object transportation task,the hydraulic dual-arm manipulator(HDM)faces more difficulty in accurately tracking the desired motion trajectory,which may cause object deformation or even breakage.To overcome this problem,a compliance motion control method is proposed in this paper for the HDM.The mass parameter of the unknown object is obtained by using an adaptive method based on velocity error.Due to the difficulty in obtaining the actual internal force of the object,the pressure signal from the pressure sensor of the hydraulic system is used to estimate the contact force at the end-effector(EE)of two hydraulic manipulators(HMs).Further,the estimated contact force is used to calculate the actual internal force on the object.Then,a compliance motion controller is designed for HDM closed-chain collaboration.The position and internal force errors of the object are reduced by the feedback of the position,velocity,and internal force errors of the object to achieve the effect of the compliance motion of the HDM,i.e.,to reduce the motion error and internal force of the object.The required velocity and force at the EE of the two HMs,including the position and internal force errors of the object,are inputted into separate position controllers.In addition,the position controllers of the two individual HMs are designed to enable precise motion control by using the virtual decomposition control method.Finally,comparative experiments are carried out on a hydraulic dual-arm test bench.The proposed method is validated by the experimental results,which demonstrate improved object position accuracy and reduced internal force.