High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which ...High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.展开更多
AIM:To evaluate whether an endoscopy position detecting unit(UPD-3) can improve cecal intubation rates, cecal intubation times and visual analog scale(VAS) pain scores, regardless of the colonoscopist's level of e...AIM:To evaluate whether an endoscopy position detecting unit(UPD-3) can improve cecal intubation rates, cecal intubation times and visual analog scale(VAS) pain scores, regardless of the colonoscopist's level of experience.METHODS:A total of 260 patients(170 men and 90women)who underwent a colonoscopy were divided into the UPD-3-guided group or the conventional group(no UPD-3 guidance).Colonoscopies were performed by experts(experience of more than 1000colonoscopies)or trainees(experience of less than 100colonoscopies).Cecal intubation rates,cecal intubation times,insertion methods(straight insertion:shortening the colonic fold through the bending technique;roping insertion:right turn shortening technique)and patient discomfort were assessed.Patient discomfort during the endoscope insertion was scored by the VAS that was divided into 6 degrees of pain.RESULTS:The cecum intubation rates,cecal intubation times,number of cecal intubations that were performed in<15 min and insertion methods were not significantly different between the conventional group and the UPD-3-guided group.The number of patients who experienced pain during the insertion was markedly less in the UPD-3-guided group than in the conventional group.Univariate and multivariate analysis showed that the following factors were associated with lower VAS pain scores during endoscope insertion:insertion method(straight insertion)and UPD-3guidance in the trainee group.For the experts group,univariate analysis showed that only the insertion method(straight insertion)was associated with lower VAS pain scores.CONCLUSION:Although UPD-3 guidance did not shorten intubation times,it resulted in less patient painduring endoscope insertion compared with conventional endoscopy for the procedures performed by trainees.展开更多
Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for positi...Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.展开更多
A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical pa...A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical patterns and match with the weld data collected on line, and so realize the accurate detection of the weld position in arc welding process.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection...To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.展开更多
This paper studies a detection method of targets of high resolution radar operating at the band of millimeter-wave(32-38GHz) under the background of the clutters, and proposes a new nonparametric detection method, whi...This paper studies a detection method of targets of high resolution radar operating at the band of millimeter-wave(32-38GHz) under the background of the clutters, and proposes a new nonparametric detection method, which not only does less computation, but also is able to detect multiple extended targets radially distributed along distance "corridor", based on the position (range) correlation information of one-dimensional range images(or called range profiles) of high resolution radar targets. The experimental results, on the real echo data of tank illuminated by the millimeter-wave stepped frequency high resolution radar, have certified that such a method presented in this paper is a very effective detection method for multiple extended targets.展开更多
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag...Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.展开更多
At present,with the development of technology,the detection of cryptococcal antigen(CRAG)plays an increasingly important role in the diagnosis of cryptococcosis.However,the three major CRAG detection technologies,late...At present,with the development of technology,the detection of cryptococcal antigen(CRAG)plays an increasingly important role in the diagnosis of cryptococcosis.However,the three major CRAG detection technologies,latex agglutination test(LA),lateral flow assay(LFA)and Enzyme-linked Immunosorbent Assay,have certain limitations.Although these techniques do not often lead to false-positive results,once this result occurs in a particular group of patients(such as human immunodeficiency virus patients),it might lead to severe consequences.展开更多
It is well known that inter-crystal scattering and penetration(ICS-P) are major spatial resolution limiting parameters in dedicated SPECT scanners with pixelated crystal.In this study,the effect of ICS-P on crystal id...It is well known that inter-crystal scattering and penetration(ICS-P) are major spatial resolution limiting parameters in dedicated SPECT scanners with pixelated crystal.In this study,the effect of ICS-P on crystal identification in different crystal configurations was evaluated using GATE Monte Carlo simulation.A ^(99m)Tc pencil-beam toward central crystal element was utilized.Beam incident angle was assumed to vary from 0° to 45° in 5° steps.The effects of various crystal configurations such as pixel-size,pixel-gap,and crystal material were studied.The influence of photon energy on the crystal identification(CI) was also investigated.Position detection accuracy(PDA) was defined as a factor indicating performance of the crystal.Furthermore,a set of ^(99m)Tc point-source simulations was performed in order to calculate peak-to-valley(PVR) ratio for each configuration.The results show that the CsI(Na)manifests higher PDA than NaI(TI) and YAP(Ce).In addition,as the incident angle increases,the crystal becomes less accurate in positioning of the events.Beyond a crystal-dependent critical angle,the PDA monotonically reduces.The PDA reaches 0.44 for the CsI(Na) at 45° beam angle.The PDAs obtained by the point-source evaluation also behave the same as for the pencil-beam irradiations.In addition,the PVRs derived from flood images linearly correlate their corresponding PDAs.In conclusion,quantitative assessment of ICS-P is mandatory for scanner design and modeling the system matrix during iterative reconstruction algorithms for the purpose of resolution modeling in ultra-high-resolution SPECT.展开更多
Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to ...Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to detect the occurrence of local tool interference and modify tool position is proposed. First, the detection matrix is established to detect local tool interference at all the cutter location points on tool path simultaneously in five-axis ball-end milling of complex surfaces. The algorithm of detection matrix based on point arithmetic is simple. Secondly, the new coordinates of the modified interfering-free points are obtained precisely by using the genetic algorithm. The feasibility of the method is validated by simulation in Matlab. This research is benefit to simplify the calculation of local tool interference detection and tool position modification.展开更多
A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are e...A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are estimated by HNN. Boththe nominal model of the healthy system and HNN training models corresponding to everyoperating point are recognized. In addition, the anticipated fault models corresponding toevery kind of fault and every operating point are obtaind in advance. The real systemmodel parameters of the system estimated by generalization process of HNN are matchedwith the nominal models of the healthy system and anticipated fault models. Consequent-ly, the final result of fault detection and diagnosis is acquired. The approach to fault diag-nosis is used in an aircraft actuating poisition servo system and the simulation resu1t is re-ported.展开更多
The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to de...The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.展开更多
In the process of metering and automatic production system in the measurement and verification of the loading robot,if there is a positional shift of the electric meter,the gripper of the loading robot will mechanical...In the process of metering and automatic production system in the measurement and verification of the loading robot,if there is a positional shift of the electric meter,the gripper of the loading robot will mechanically collide with the electric meter.Due to the large force of the loading robot,the appearance of the electric meter is damaged,and the mechanical arm of the loading robot is broken,which reduces the service life of the measuring and verifying equipment,which is not conducive to the continuous and stable operation of the automatic verification system.In this paper,an automatic detection system of electric meter position in the turnaround box is proposed,which can reduce the failure rate of the automatic verification system,improve the verification efficiency,reduce the loss of metering assets and the occurrence of safety accidents by realizing the offset detection and correction of the electric meter position in the turnover box.展开更多
Seeking in a field of view(FOV) is influenced by the existence of jammers,noise,shine background or flying perturbations.All these factors may push the target out of the FOV and cause missing the target.In all the see...Seeking in a field of view(FOV) is influenced by the existence of jammers,noise,shine background or flying perturbations.All these factors may push the target out of the FOV and cause missing the target.In all the seekers the FOV is not fully exploited which means the target can be missed before becoming out of the FOV,this results of the nonlinearity of the reticle structure.In this paper,a novel method of the target position detection a crossed four slits or crossed array trackers(CAT) seeker will be designed,simulated and evaluated.The idea of this method depends on dividing the FOV into main regions up to a certain parameter,which is the pulses number;then,each main region will be divided into sub-regions up to a second parameter which will be the pulses distribution a spin period.The errors sources will be discussed and evaluated.Other new idea will be applied which is exploiting some area of the FOV where a part of the position data is missed in the information signal by pushing the target to the region where the information signal carries the total position data.展开更多
The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of air...The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.展开更多
With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component...With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.展开更多
In this paper,an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks,such as the irregular shapes and varying sizes of ships.The improved model replaces the ...In this paper,an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks,such as the irregular shapes and varying sizes of ships.The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset.This paper also introduces a novel multi-scale feature fusion module,which comprises Path Aggregation Network(PAN)modules,enabling the efficient capture of ship features across different scales.Furthermore,data preprocessing is enhanced through the application of data augmentation techniques,including random rotation,scaling,and cropping,which serve to bolster data diversity and robustness.The distribution of positive and negative samples in the dataset is balanced using random sampling,ensuring a more accurate representation of real-world scenarios.Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness,highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain.展开更多
基金supported by the National Natural Science Foundation of China under Grant 51991384Anhui Provincial Major Science and Technology Project under Grant 202203c08020010。
文摘High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.
文摘AIM:To evaluate whether an endoscopy position detecting unit(UPD-3) can improve cecal intubation rates, cecal intubation times and visual analog scale(VAS) pain scores, regardless of the colonoscopist's level of experience.METHODS:A total of 260 patients(170 men and 90women)who underwent a colonoscopy were divided into the UPD-3-guided group or the conventional group(no UPD-3 guidance).Colonoscopies were performed by experts(experience of more than 1000colonoscopies)or trainees(experience of less than 100colonoscopies).Cecal intubation rates,cecal intubation times,insertion methods(straight insertion:shortening the colonic fold through the bending technique;roping insertion:right turn shortening technique)and patient discomfort were assessed.Patient discomfort during the endoscope insertion was scored by the VAS that was divided into 6 degrees of pain.RESULTS:The cecum intubation rates,cecal intubation times,number of cecal intubations that were performed in<15 min and insertion methods were not significantly different between the conventional group and the UPD-3-guided group.The number of patients who experienced pain during the insertion was markedly less in the UPD-3-guided group than in the conventional group.Univariate and multivariate analysis showed that the following factors were associated with lower VAS pain scores during endoscope insertion:insertion method(straight insertion)and UPD-3guidance in the trainee group.For the experts group,univariate analysis showed that only the insertion method(straight insertion)was associated with lower VAS pain scores.CONCLUSION:Although UPD-3 guidance did not shorten intubation times,it resulted in less patient painduring endoscope insertion compared with conventional endoscopy for the procedures performed by trainees.
基金supported by National Natural Science Foundation of China(Grant No.51175362)
文摘Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.
基金Guangdong Provincial Natural Science Foundation of China
文摘A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical patterns and match with the weld data collected on line, and so realize the accurate detection of the weld position in arc welding process.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)。
文摘To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.
文摘This paper studies a detection method of targets of high resolution radar operating at the band of millimeter-wave(32-38GHz) under the background of the clutters, and proposes a new nonparametric detection method, which not only does less computation, but also is able to detect multiple extended targets radially distributed along distance "corridor", based on the position (range) correlation information of one-dimensional range images(or called range profiles) of high resolution radar targets. The experimental results, on the real echo data of tank illuminated by the millimeter-wave stepped frequency high resolution radar, have certified that such a method presented in this paper is a very effective detection method for multiple extended targets.
基金financial supports from the National Natural Science Foundation of China (No. 51134024)the National High Technology Research and Development Program of China (No. 2012AA062203)are gratefully acknowledged
文摘Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.
基金Supported by the Key Discipline of Jiaxing Respiratory Medicine Construction Project,No.2019-zc-04.
文摘At present,with the development of technology,the detection of cryptococcal antigen(CRAG)plays an increasingly important role in the diagnosis of cryptococcosis.However,the three major CRAG detection technologies,latex agglutination test(LA),lateral flow assay(LFA)and Enzyme-linked Immunosorbent Assay,have certain limitations.Although these techniques do not often lead to false-positive results,once this result occurs in a particular group of patients(such as human immunodeficiency virus patients),it might lead to severe consequences.
基金supported by Research Center for Molecular and Cellular Imaging(RCMCI),Tehran University of Medical Sciences(No.29885)
文摘It is well known that inter-crystal scattering and penetration(ICS-P) are major spatial resolution limiting parameters in dedicated SPECT scanners with pixelated crystal.In this study,the effect of ICS-P on crystal identification in different crystal configurations was evaluated using GATE Monte Carlo simulation.A ^(99m)Tc pencil-beam toward central crystal element was utilized.Beam incident angle was assumed to vary from 0° to 45° in 5° steps.The effects of various crystal configurations such as pixel-size,pixel-gap,and crystal material were studied.The influence of photon energy on the crystal identification(CI) was also investigated.Position detection accuracy(PDA) was defined as a factor indicating performance of the crystal.Furthermore,a set of ^(99m)Tc point-source simulations was performed in order to calculate peak-to-valley(PVR) ratio for each configuration.The results show that the CsI(Na)manifests higher PDA than NaI(TI) and YAP(Ce).In addition,as the incident angle increases,the crystal becomes less accurate in positioning of the events.Beyond a crystal-dependent critical angle,the PDA monotonically reduces.The PDA reaches 0.44 for the CsI(Na) at 45° beam angle.The PDAs obtained by the point-source evaluation also behave the same as for the pencil-beam irradiations.In addition,the PVRs derived from flood images linearly correlate their corresponding PDAs.In conclusion,quantitative assessment of ICS-P is mandatory for scanner design and modeling the system matrix during iterative reconstruction algorithms for the purpose of resolution modeling in ultra-high-resolution SPECT.
基金Funded by the National Natural Science Foundation of China (No.51575321)the Major Science and Technology Innovation Project of Shandong Province (No.2018CXGC0804)Taishan Scholars Program of Shandong Province (No.ts201712002)
文摘Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to detect the occurrence of local tool interference and modify tool position is proposed. First, the detection matrix is established to detect local tool interference at all the cutter location points on tool path simultaneously in five-axis ball-end milling of complex surfaces. The algorithm of detection matrix based on point arithmetic is simple. Secondly, the new coordinates of the modified interfering-free points are obtained precisely by using the genetic algorithm. The feasibility of the method is validated by simulation in Matlab. This research is benefit to simplify the calculation of local tool interference detection and tool position modification.
文摘A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are estimated by HNN. Boththe nominal model of the healthy system and HNN training models corresponding to everyoperating point are recognized. In addition, the anticipated fault models corresponding toevery kind of fault and every operating point are obtaind in advance. The real systemmodel parameters of the system estimated by generalization process of HNN are matchedwith the nominal models of the healthy system and anticipated fault models. Consequent-ly, the final result of fault detection and diagnosis is acquired. The approach to fault diag-nosis is used in an aircraft actuating poisition servo system and the simulation resu1t is re-ported.
文摘The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.
文摘In the process of metering and automatic production system in the measurement and verification of the loading robot,if there is a positional shift of the electric meter,the gripper of the loading robot will mechanically collide with the electric meter.Due to the large force of the loading robot,the appearance of the electric meter is damaged,and the mechanical arm of the loading robot is broken,which reduces the service life of the measuring and verifying equipment,which is not conducive to the continuous and stable operation of the automatic verification system.In this paper,an automatic detection system of electric meter position in the turnaround box is proposed,which can reduce the failure rate of the automatic verification system,improve the verification efficiency,reduce the loss of metering assets and the occurrence of safety accidents by realizing the offset detection and correction of the electric meter position in the turnover box.
文摘Seeking in a field of view(FOV) is influenced by the existence of jammers,noise,shine background or flying perturbations.All these factors may push the target out of the FOV and cause missing the target.In all the seekers the FOV is not fully exploited which means the target can be missed before becoming out of the FOV,this results of the nonlinearity of the reticle structure.In this paper,a novel method of the target position detection a crossed four slits or crossed array trackers(CAT) seeker will be designed,simulated and evaluated.The idea of this method depends on dividing the FOV into main regions up to a certain parameter,which is the pulses number;then,each main region will be divided into sub-regions up to a second parameter which will be the pulses distribution a spin period.The errors sources will be discussed and evaluated.Other new idea will be applied which is exploiting some area of the FOV where a part of the position data is missed in the information signal by pushing the target to the region where the information signal carries the total position data.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB72400401A)
文摘The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.
基金Project(51175242)supported by the National Natural Science Foundation of ChinaProject(BA2012031)supported by the Jiangsu Province Science and Technology Foundation of China
文摘With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.
基金supported by the Key R&D Project of Hainan Province(Grant No.ZDYF2022GXJS348,ZDYF2022SHFZ039).
文摘In this paper,an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks,such as the irregular shapes and varying sizes of ships.The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset.This paper also introduces a novel multi-scale feature fusion module,which comprises Path Aggregation Network(PAN)modules,enabling the efficient capture of ship features across different scales.Furthermore,data preprocessing is enhanced through the application of data augmentation techniques,including random rotation,scaling,and cropping,which serve to bolster data diversity and robustness.The distribution of positive and negative samples in the dataset is balanced using random sampling,ensuring a more accurate representation of real-world scenarios.Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness,highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain.