Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin...The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin gradually formed a rhombic morphology with the subduction of the basin along the New Britain Trench and the Trobriand Trough.By analyzing the vertical gravity gradient,natural earthquake and seismic reflection data,this study determines the structural characteristics of the Solomon Sea Basin.It was found that the tectonics of the basin are characterized by the original expansion structure within the central part in addition to the structure induced by the latest subduction along the basin margin.The original spreading structure of the basin presented an east–west linear graben and horst controlled by normal faults during the basin expansion period.As a result of the subduction and slab-pull of the Solomon Sea Basin,extensional structure belts parallel to the New Britain Trench formed along the basin margin.展开更多
At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achievi...At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.展开更多
Paleostress plays a significant role in controlling the formation, accumulation, and distribution of reservoirs, and this could be an important factor in controlling the production of hydrocarbons from the unconventio...Paleostress plays a significant role in controlling the formation, accumulation, and distribution of reservoirs, and this could be an important factor in controlling the production of hydrocarbons from the unconventional reservoirs. In this study, we will use 3D seismic reflection data to perform the slip-tendency-based stress inversion to determine the stress field in the basement of the northern slope area in the Bongor Basin. The dataset for this technique is easily available in the oil and gas companies. The stress inversion results from the basement of the northern slope area of Bongor basin show that the maximum principal stress axis (σ1) is oriented vertically, the intermediate principal stress axis (σ2) is oriented N18° and the minimum principal stress axis (σ3) is oriented N105°, and σ2/σ1 = 0.60 and σ3/σ1 = 0.29. The findings of this paper provide significant information to understand the fault reactivation at the critical stage of hydrocarbon accumulation and the regional tectonic evolution.展开更多
The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour...The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.展开更多
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois...The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application.展开更多
Random noise attenuation is significant in seismic data processing.Supervised deep learning-based denoising methods have been widely developed and applied in recent years.In practice,it is often time-consuming and lab...Random noise attenuation is significant in seismic data processing.Supervised deep learning-based denoising methods have been widely developed and applied in recent years.In practice,it is often time-consuming and laborious to obtain noise-free data for supervised learning.Therefore,we propose a novel deep learning framework to denoise prestack seismic data without clean labels,which trains a high-resolution residual neural network(SRResnet)with noisy data for input and the same valid data with different noise for output.Since valid signals in noisy sample pairs are spatially correlated and random noise is spatially independent and unpredictable,the model can learn the features of valid data while suppressing random noise.Noisy data targets are generated by a simple conventional method without fine-tuning parameters.The initial estimates allow signal or noise leakage as the network does not require clean labels.The Monte Carlo strategy is applied to select training patches for increasing valid patches and expanding training datasets.Transfer learning is used to improve the generalization of real data processing.The synthetic and real data tests perform better than the commonly used state-of-the-art denoising methods.展开更多
The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformi...The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field.展开更多
Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data...Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.展开更多
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements...In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.展开更多
The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South Ch...The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic...The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.展开更多
A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data proces...A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.展开更多
In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic ...In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.展开更多
Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure character...Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.展开更多
Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of ...Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.展开更多
A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequ...A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.展开更多
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.91858215 and 41906048)。
文摘The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin gradually formed a rhombic morphology with the subduction of the basin along the New Britain Trench and the Trobriand Trough.By analyzing the vertical gravity gradient,natural earthquake and seismic reflection data,this study determines the structural characteristics of the Solomon Sea Basin.It was found that the tectonics of the basin are characterized by the original expansion structure within the central part in addition to the structure induced by the latest subduction along the basin margin.The original spreading structure of the basin presented an east–west linear graben and horst controlled by normal faults during the basin expansion period.As a result of the subduction and slab-pull of the Solomon Sea Basin,extensional structure belts parallel to the New Britain Trench formed along the basin margin.
基金This study was supported by the National Natural Science Foundation of China under the project‘Research on the Dynamic Location of Receiver Points and Wave Field Separation Technology Based on Deep Learning in OBN Seismic Exploration’(No.42074140).
文摘At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.
文摘Paleostress plays a significant role in controlling the formation, accumulation, and distribution of reservoirs, and this could be an important factor in controlling the production of hydrocarbons from the unconventional reservoirs. In this study, we will use 3D seismic reflection data to perform the slip-tendency-based stress inversion to determine the stress field in the basement of the northern slope area in the Bongor Basin. The dataset for this technique is easily available in the oil and gas companies. The stress inversion results from the basement of the northern slope area of Bongor basin show that the maximum principal stress axis (σ1) is oriented vertically, the intermediate principal stress axis (σ2) is oriented N18° and the minimum principal stress axis (σ3) is oriented N105°, and σ2/σ1 = 0.60 and σ3/σ1 = 0.29. The findings of this paper provide significant information to understand the fault reactivation at the critical stage of hydrocarbon accumulation and the regional tectonic evolution.
基金Supported by the National Key R&D Program of China(No.2016YFC0303900)the Laoshan Laboratory(Nos.MGQNLM-KF201807,LSKJ202203604)the National Natural Science Foundation of China(No.42106072)。
文摘The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the National Natural Science Foundation of China(42174152)+1 种基金the Strategic Cooperation Technology Projects of China National Petroleum Corporation(CNPC)and China University of Petroleum-Beijing(CUPB)(ZLZX2020-03)the R&D Department of China National Petroleum Corporation(2022DQ0604-01)。
文摘The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application.
基金employed by Petroleum Exploration and Production Research Institute of SINOPECfunded by the National Key R&D Program of China(2021YFC3000701).
文摘Random noise attenuation is significant in seismic data processing.Supervised deep learning-based denoising methods have been widely developed and applied in recent years.In practice,it is often time-consuming and laborious to obtain noise-free data for supervised learning.Therefore,we propose a novel deep learning framework to denoise prestack seismic data without clean labels,which trains a high-resolution residual neural network(SRResnet)with noisy data for input and the same valid data with different noise for output.Since valid signals in noisy sample pairs are spatially correlated and random noise is spatially independent and unpredictable,the model can learn the features of valid data while suppressing random noise.Noisy data targets are generated by a simple conventional method without fine-tuning parameters.The initial estimates allow signal or noise leakage as the network does not require clean labels.The Monte Carlo strategy is applied to select training patches for increasing valid patches and expanding training datasets.Transfer learning is used to improve the generalization of real data processing.The synthetic and real data tests perform better than the commonly used state-of-the-art denoising methods.
文摘The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field.
基金financially supported by National 863 Program (Grants No.2006AA 09A 102-09)National Science and Technology of Major Projects ( Grants No.2008ZX0 5025-001-001)
文摘Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.
基金This research is sponsored by National Natural Science Foundation of China (No. 40272041) and Innovative Foundation of CNPC (N0. 04E702).
文摘In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.
基金supported by the National Natural Science Foundation of China(Nos.41506046,41376060,41706054)the Opening Foundation of Key Laboratory of Ocean and Marginal Sea Geology,CAS(No.MSGL15-05)+1 种基金WPOS(No.XDA11030102-02)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13010101)
文摘The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金Funded by the Project of China Geological Survey (No.1212010916040)the Sichuan Science and Technology Program (No.2017JY0051)the Sichuan Science and Technology Program (No.2018GZ0200)
文摘The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.
文摘A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.
文摘In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.
基金This reservoir research is sponsored by the National 973 Subject Project (No. 2001CB209).
文摘Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.
文摘Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.
文摘A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.