期刊文献+
共找到155篇文章
< 1 2 8 >
每页显示 20 50 100
Mu-Net:Multi-Path Upsampling Convolution Network for Medical Image Segmentation 被引量:2
1
作者 Jia Chen Zhiqiang He +3 位作者 Dayong Zhu Bei Hui Rita Yi Man Li Xiao-Guang Yue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期73-95,共23页
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of... Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half. 展开更多
关键词 Medical image segmentation MU-Net(multi-path upsampling convolution network) U-Net clinical diagnosis encoder-decoder networks
下载PDF
Point cloud upsampling generative adversarial network based on residual multi-scale off-set attention 被引量:1
2
作者 Bin SHEN Li LI +3 位作者 Xinrong HU Shengyi GUO Jin HUANG Zhiyao LIANG 《Virtual Reality & Intelligent Hardware》 2023年第1期81-91,共11页
Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we ... Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we propose a new generative adversarial network(GAN) that extends PU-GAN for upsampling of point clouds. Its core architecture aims to replace the traditional self-attention(SA) module with an implicit Laplacian offset attention(OA) module and to aggregate the adjacency features using a multiscale offset attention(MSOA)module, which adaptively adjusts the receptive field to learn various structural features. Finally, residual links are added to create our residual multiscale offset attention(RMSOA) module, which utilizes multiscale structural relationships to generate finer details. Result The results of several experiments show that our method outperforms existing methods and is highly robust. 展开更多
关键词 Point cloud upsampling Generative adversarial network ATTENTION
下载PDF
高性能YOLOv3-tiny嵌入式硬件加速器的混合优化设计
3
作者 谭会生 肖鑫凯 卿翔 《半导体技术》 CAS 北大核心 2025年第1期55-63,共9页
为解决在嵌入式设备中部署神经网络受算法复杂度、执行速度和硬件资源约束的问题,基于Zynq异构平台,设计了一个高性能的YOLOv3-tiny网络硬件加速器。在算法优化方面,将卷积层和批归一化层融合,使用8 bit量化算法,简化了算法流程;在加速... 为解决在嵌入式设备中部署神经网络受算法复杂度、执行速度和硬件资源约束的问题,基于Zynq异构平台,设计了一个高性能的YOLOv3-tiny网络硬件加速器。在算法优化方面,将卷积层和批归一化层融合,使用8 bit量化算法,简化了算法流程;在加速器架构设计方面,设计了可动态配置的层间流水线和高效的数据传输方案,缩短了推理时间,减小了存储资源消耗;在网络前向推理方面,针对卷积计算,基于循环展开策略,设计了8通道并行流水的卷积模块;针对池化计算,采用分步计算策略实现对连续数据流的高效处理;针对上采样计算,提出了基于数据复制的2倍上采样方法。实验结果表明,前向推理时间为232 ms,功耗仅为2.29 W,系统工作频率为200 MHz,达到了23.97 GOPS的实际算力。 展开更多
关键词 YOLOv3-tiny网络 异构平台 硬件加速器 动态配置架构 硬件混合优化 数据复制上采样
下载PDF
DB-DCAFN:dual-branch deformable cross-attention fusion network for bacterial segmentation
4
作者 Jingkun Wang Xinyu Ma +6 位作者 Long Cao Yilin Leng Zeyi Li Zihan Cheng Yuzhu Cao Xiaoping Huang Jian Zheng 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期155-170,共16页
Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challen... Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and main-tain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmen-tation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experi-mental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images. 展开更多
关键词 Bacterial segmentation dual-branch parallel encoder Deformable cross-attention module Feature assignment fusion module
下载PDF
基于改进YOLOv5s的小目标检测算法 被引量:7
5
作者 贵向泉 秦庆松 孔令旺 《计算机工程与设计》 北大核心 2024年第4期1134-1140,共7页
针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目... 针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目标的检测精度;在Neck结构中,通过优化上采样算子和添加注意力机制,加强小目标的特征信息。实验结果表明,改进后的算法在VisDrone数据集上与YOLOv5s算法相比,mAP@small提高了3.2%,且检测速度满足实时性的要求,能够很好地应用于小目标检测任务中。 展开更多
关键词 YOLOv5s算法 小目标检测 损失函数 上采样算子 骨干网络 注意力机制 特征信息
下载PDF
基于改进DeeplabV3+的遥感图像道路分割模型 被引量:1
6
作者 张银胜 单梦姣 +3 位作者 钟思远 陈戈 童俊毅 单慧琳 《国外电子测量技术》 2024年第1期189-198,共10页
针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上... 针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上采样,增强了编码器和解码器之间的紧密连接,全面保留了细节信息。同时,在ASPP模块中采用深度可分离膨胀卷积DS-ASPP,显著减少了参数量。实验结果表明,该模型在Massachusetts Roads数据集上的交并比达到了83.71%,准确率达到了93.71%,分割精度最优,模型参数量为55.57×10^(6),能够有效地避免边界模糊和遮挡导致的错漏检问题,在遥感道路分割中提高了精度和速度。 展开更多
关键词 遥感图像 道路分割 DeeplabV3+模型 MobileNetV3模型 多级上采样
下载PDF
基于注意力与密集重参数化的目标检测算法
7
作者 陈志旺 雷春明 +2 位作者 吕昌昊 王婷 彭勇 《高技术通讯》 CAS 北大核心 2024年第3期233-247,共15页
针对目标检测任务中背景复杂、目标尺寸差异大等因素导致目标检测结果较差的问题,本文提出基于注意力和密集重参数化的目标检测算法。首先,基于CSP-DarkNet提出高效的特征提取网络,主要包括密集重参数化模块和CASA模块2个设计。前者利... 针对目标检测任务中背景复杂、目标尺寸差异大等因素导致目标检测结果较差的问题,本文提出基于注意力和密集重参数化的目标检测算法。首先,基于CSP-DarkNet提出高效的特征提取网络,主要包括密集重参数化模块和CASA模块2个设计。前者利用密集连接保留浅层特征,又通过重参数化结构降低网络复杂度;后者CASA模块用于获取需要的目标信息。其次,特征融合在特征金字塔(FPN)和路径聚合网络(PAN)的基础上,引入内容感知特征重组(CARAFE)进行上采样,有效解决了邻近插值法等未能捕捉丰富语义信息的问题;提出更高效的C3-G模块,获取丰富的梯度信息,增强模型表达能力和感知能力;同时,引入深度可分离卷积提升运算效率。最后,检测输出采用在更大范围上跨领域正负样本匹配策略扩充正样本数量,提升检测效果。该算法在MS COCO和PASCAL VOC数据集上的mAP@0.5分别达到了57.5%和83.0%,充分说明了本文算法的先进性。 展开更多
关键词 目标检测 重参数化 注意力机制 特征融合 上采样 正负样本匹配
下载PDF
DFNet:高效的无解码语义分割方法
8
作者 刘腊梅 杜宝昌 +2 位作者 黄惠玲 章永鉴 韩军 《液晶与显示》 CAS CSCD 北大核心 2024年第2期121-130,共10页
针对编解码语义分割网络计算量大、解码结构复杂的问题,提出一种高效无解码的二值语义分割模型DFNet。该模型首先去除主流分割网络中复杂的解码结构和跳跃连接,采用卷积重塑上采样方法重塑特征编码直接得到分割结果,简化网络模型结构;... 针对编解码语义分割网络计算量大、解码结构复杂的问题,提出一种高效无解码的二值语义分割模型DFNet。该模型首先去除主流分割网络中复杂的解码结构和跳跃连接,采用卷积重塑上采样方法重塑特征编码直接得到分割结果,简化网络模型结构;其次在编码器中融合轻量双重注意力机制EC&SA,提高特征编码的通道及空间信息交互,增强网络的编码能力;最后使用PolyCE损失替代常规分割损失,解决正负样本不均衡问题,提高模型的分割精度。在Deep‑Globe道路分割和CrackForest缺陷检测等二值分割数据集上的实验结果表明,本文模型的分割精度F1均值和IoU均值分别达到84.69%和73.95%,且分割速度高达94 FPS,远超主流语义分割模型,极大地提高了分割任务效率。 展开更多
关键词 二值分割 卷积重塑上采样 EC&SA PolyCE 道路分割 缺陷检测
下载PDF
用于数据采集器测试的时间脉冲插值分析方法
9
作者 赵立军 李文一 +2 位作者 唐荣 郑淑梅 邓董建 《电子器件》 CAS 2024年第1期111-115,共5页
地震数据采集器时间服务精度是评价设备性能的重要指标,一般使用标准时间源输出的时间脉冲信号采样数据进行分析计算,但受仪器采样率限制,时间偏差测试分辨率不高。设计了基于一阶差分和直方图分析的脉冲信号上升沿识别、高低电位分析... 地震数据采集器时间服务精度是评价设备性能的重要指标,一般使用标准时间源输出的时间脉冲信号采样数据进行分析计算,但受仪器采样率限制,时间偏差测试分辨率不高。设计了基于一阶差分和直方图分析的脉冲信号上升沿识别、高低电位分析和时间偏差分析算法,研究使用非线性插值分析方法对地震数据采集器采集的标准时间脉冲信号进行波形升采样恢复,并基于所提算法进行实验分析和讨论,在提高地震数据采集器时间偏差测试分辨率的同时,规范了测试数据处理方法和流程。 展开更多
关键词 地震数据采集器 时间误差 升采样率 测试分辨率
下载PDF
采用级联策略融合边界特征的多尺度息肉分割网络
10
作者 易见兵 万建辉 +2 位作者 曹锋 李俊 陈鑫 《光学精密工程》 EI CAS CSCD 北大核心 2024年第18期2846-2860,共15页
结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干... 结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干网络提取的图像特征,从而提高通道和空间位置的相关性。其次,考虑到边界区分度不够,设计了一个级联特征融合网络,以更好地保留边界信息并提高边界区分度,从而提高分割精度。最后,引入了一种双分支混合上采样模块来获取更多的特征细节信息,以实现特征的互补以及捕获更完整有效的特征。在CVC-ClinicDB和Kvasir数据集上进行测试,本文算法的平均Dice系数分别为0.944,0.920,平均交并比分别为0.900,0.869;而M2SNet算法的平均Dice系数分别为0.922,0.912,平均交并比分别为0.880,0.861。在ETIS-LaribPolypDB,CVC-300和CVC-ColonDB数据集上进行测试,本文算法的平均Dice系数分别为0.776,0.915,0.782;而M2SNet算法的平均Dice系数分别为0.749,0.903,0.758。实验结果表明本文算法的分割精度较高,泛化能力较强。 展开更多
关键词 多尺度息肉分割 通道分组空间增强 边界特征增强 级联特征融合 双分支上采样
下载PDF
基于点代理增强和逐层上采样的猪体点云补全方法
11
作者 尹令 罗泗港 +4 位作者 吴珍芳 蔡更元 沈卓婷 李钦萍 周润林 《中国猪业》 2024年第1期84-89,共6页
采用逆向工程技术进行猪体的三维重建并测算,是低成本无接触式猪体型体况评估的一大解决方案,在比较单视角和多视角采集方法的优缺点后,本文提出基于深度学习的点云补全方法,将猪体局部点云恢复成一个完整的点云以实现猪体三维重建。该... 采用逆向工程技术进行猪体的三维重建并测算,是低成本无接触式猪体型体况评估的一大解决方案,在比较单视角和多视角采集方法的优缺点后,本文提出基于深度学习的点云补全方法,将猪体局部点云恢复成一个完整的点云以实现猪体三维重建。该猪体点云补全方法基于点代理增强和逐层上采样,首先通过特征提取结合位置嵌入生成点代理,使用点代理增强Transformer进一步提高点代理的特征表示能力,再基于点代理通过逐层上采样由粗到细逐步恢复最终的高分辨率、细粒度和分布均匀的完整点云。本文对实际生产环境中采集的猪体点云进行补全,所提方法与目前主流的点云补全方法进行对比试验,在多个指标的评定上,本文提出的方法都取得了较好性能,尤其是在猪体点云缺失严重补全难度较大的情况下效果更为突出。试验证明该方法对猪体主干部位的补全具备应用价值,能够用于实现基于局部点云的猪体三维点云重建。 展开更多
关键词 三维重建 深度学习 猪体点云补全 TRANSFORMER 点云上采样
下载PDF
多尺度特征金字塔融合的街景图像语义分割
12
作者 曲海成 王莹 +1 位作者 董康龙 刘万军 《计算机系统应用》 2024年第3期73-84,共12页
针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失... 针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失的问题.然后利用层传递的迭代空洞空间金字塔,将自顶向下的特征信息依次融合,提高了上下文信息的有效交互能力;在多尺度特征融合之后引入属性注意力模块,使网络抑制冗余信息,强化重要特征.再者,以通道扩展上采样代替双线插值上采样作为解码器,进一步提升了特征图的分辨率.最后,LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%,与近几年网络模型相比,本文网络模型可以精确地提取像素的位置信息以及空间维度信息,提高了语义分割的准确率. 展开更多
关键词 语义分割 MDSDC IDCP-LC 属性注意力 通道扩展上采样 特征融合
下载PDF
改进YOLOv5s的铁路异物入侵检测算法 被引量:1
13
作者 孟彩霞 王兆楠 +2 位作者 石磊 高宇飞 卫琳 《小型微型计算机系统》 CSCD 北大核心 2024年第4期879-886,共8页
行人、车辆等异物侵入铁路界线,严重威胁行人安全和铁路交通安全.针对传统铁路异物入侵检测方法精度低、时效性差等问题,提出改进YOLOv5s算法的铁路异物入侵检测模型SD-YOLO.本文提出SSA混合注意力机制,加强模型的局部表征能力,提高小... 行人、车辆等异物侵入铁路界线,严重威胁行人安全和铁路交通安全.针对传统铁路异物入侵检测方法精度低、时效性差等问题,提出改进YOLOv5s算法的铁路异物入侵检测模型SD-YOLO.本文提出SSA混合注意力机制,加强模型的局部表征能力,提高小目标识别效果;提出DW-Decoupled Head解耦检测头,加快网络收敛速度;引入边界框回归损失函数SIoU,提高了模型的检测精度;使用转置卷积作为采样方法,采样更适合铁路侵限障碍物特征的尺寸和比例.在数据集RS和Pascal VOC 2012进行实验验证,与基线YOLOv5s算法相比,平均精度mAP@0.5分别提高了2.7%、1.8%,mAP@.5:.95分别提高了2.9%、2.1%,检测速度分别达到79 FPS和78 FPS,表明该算法在检测精度和速度上均取得良好的性能,有效改善了漏检、误检问题,提高了小目标识别能力. 展开更多
关键词 铁路入侵检测 混合注意力机制 解耦头 损失函数 上采样
下载PDF
基于DFECANet的遥感图像飞机目标检测方法 被引量:3
14
作者 单慧琳 吕宗奎 +3 位作者 付相为 胡宇翔 段修贤 张银胜 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期19-29,共11页
针对现有的遥感图像目标检测方法中对小尺寸飞机目标的检测精度不高、特征信息传递不准确、信息交互不充分等问题,提出了一种基于可辨别特征提取和上下文感知的遥感图像飞机目标检测方法。设计了以可辨别特征提取模块为主体的主干网络,... 针对现有的遥感图像目标检测方法中对小尺寸飞机目标的检测精度不高、特征信息传递不准确、信息交互不充分等问题,提出了一种基于可辨别特征提取和上下文感知的遥感图像飞机目标检测方法。设计了以可辨别特征提取模块为主体的主干网络,用以加强对多尺度飞机目标的特征提取;引入自适应特征增强模块,选择性关注小目标、优化特征信息的传递与信息交互;并设计了特征融合上采样模块对特征图进行上采样操作,用以提升高层语义信息的准确性。在DOTAv1数据集上的检测精度达到了95.2%,相较于YOLOv5s、SCRDet、ASSD等主流算法,飞机目标的检测精度提高了3.7%~18%。此外,该方法的检测速度以及模型参数量分别为147 fps和13.4 M,相较于当前主流算法具备较强的竞争力,满足在遥感背景下对飞机目标的实时检测需求。 展开更多
关键词 图像处理 目标检测 多尺度特征融合 遥感图像 特征上采样
下载PDF
基于改进YOLOv9的禁垦陡坡地违规耕种区遥感影像检测方法 被引量:1
15
作者 吴仪邦 陈喆 +2 位作者 李喆 向大享 崔长露 《农业工程学报》 EI CAS CSCD 北大核心 2024年第17期197-204,共8页
禁止开垦陡坡地范围内的违规耕种和开垦活动是水土保持法明令禁止的,针对目前对于违规耕种区的监管靠人工目视导致的检测效率低、时间成本高昂等问题,该研究设计一种基于改进YOLOv9的禁垦陡坡地违规耕种区遥感影像检测模型。首先,通过在... 禁止开垦陡坡地范围内的违规耕种和开垦活动是水土保持法明令禁止的,针对目前对于违规耕种区的监管靠人工目视导致的检测效率低、时间成本高昂等问题,该研究设计一种基于改进YOLOv9的禁垦陡坡地违规耕种区遥感影像检测模型。首先,通过在YOLOv9的骨干网络中引入轻量级自注意力机制SimAM,验证获取全局信息和更丰富上下文信息在违规耕种区检测的作用;之后,将原有基于内核的动态上采样算子替换为超轻量化上采样算子DySample,以减少网络的参数量,提高识别速度和精度。消融试验结果表明,与原始模型相比,改进模型在权重大小、帧率基本一致的情况下,准确率、召回率、平均精度均值和F1得分分别提高了3.62、3.78、1.86、3.70个百分点。经过实地调查和遥感影像迁移试验,改进YOLOv9模型的平均识别精度为82.27%,优于FasterRCNN、YOLOv7、YOLOv8等主流目标检测算法,进一步验证了模型的可靠性和有效性,研究结果可为水土保持监管提供高质量数据支撑,对区域水土流失治理、生态环境保护及绿色低碳可持续发展具有重要决策意义。 展开更多
关键词 遥感 深度学习 禁垦陡坡地 YOLOv9 注意力机制 动态上采样
下载PDF
改进YOLOv5s的复杂交通场景下目标检测算法 被引量:3
16
作者 卫策 吕进 曲晨阳 《电子测量技术》 北大核心 2024年第2期121-130,共10页
针对在实际的交通道路目标检测中,存在着小目标检测精度低,遮挡目标容易出现漏检误检等问题,提出了一种改进的YOLOv5s道路目标检测算法YOLOv5s-OEAG。将YOLOv5s的标签分配策略更换为效率更高的OTA标签分配策略,提高模型的检测精度与泛... 针对在实际的交通道路目标检测中,存在着小目标检测精度低,遮挡目标容易出现漏检误检等问题,提出了一种改进的YOLOv5s道路目标检测算法YOLOv5s-OEAG。将YOLOv5s的标签分配策略更换为效率更高的OTA标签分配策略,提高模型的检测精度与泛化能力;提出了一种轻量化的解耦预测头对不同尺寸的特征层进行分类任务与回归任务的解耦,提高模型对道路中小目标的检测能力;将原始模型中的最近邻插值上采样模块替换为轻量级通用上采样CARAFE模块,有助于更好地保留图像中的细节信息,提高模型的精度;提出了一种新的C3模块GMC3,在减小模型计算量的同时提高模型捕获特征的能力;为了提高模型的泛化能力,对KITTI数据集进行了扩充,增加了小目标的数量。实验结果表明,改进后的模型在经过扩充后的KITTI数据集的mAP达到了90.4%,比原始模型的精度提高了2.8%;FPS为75,满足实时性的要求,在一定程度上提高了对复杂交通场景的适应能力。 展开更多
关键词 目标检测 YOLOv5s 深度学习 轻量化解耦头 CARAFE上采样
下载PDF
基于改进卷积神经网络的膝关节图像分类研究
17
作者 李志敏 邹俊忠 +2 位作者 张见 王蓓 陈兰岚 《传感器与微系统》 CSCD 北大核心 2024年第12期49-53,共5页
提取区域有效信息是膝关节磁共振成像(MRI)诊断的关键。为提取MRI图像有效细节特征,提出一种结合注意力机制和上采样融合的深度学习分类模型。首先,通过改进的通道注意力机制增强有用特征,抑制无关特征;然后,利用上采样连接机制改进特... 提取区域有效信息是膝关节磁共振成像(MRI)诊断的关键。为提取MRI图像有效细节特征,提出一种结合注意力机制和上采样融合的深度学习分类模型。首先,通过改进的通道注意力机制增强有用特征,抑制无关特征;然后,利用上采样连接机制改进特征金字塔网络,弥补上采样过程中高级特征的损失问题,并融合多尺度特征;最后,使用MRPyrNet中的细节池化模块对输出的特征图进行不同尺寸的细致分析,增强模型捕捉低级细节特征的能力。在MRNet数据集上的实验结果表明,与其他膝关节MRI图像分类方法相比,所提方法在综合性能方面更有优势。 展开更多
关键词 膝关节 磁共振成像 深度学习 注意力机制 上采样
下载PDF
基于BiLevelNet的实时语义分割算法
18
作者 吴马靖 张永爱 +2 位作者 林珊玲 林志贤 林坚普 《光电工程》 CAS CSCD 北大核心 2024年第5期21-33,共13页
针对语义分割网络参数量过大导致其难以部署在内存受限的边缘设备等问题,本文提出一种基于BiLevelNet的轻量级实时语义分割算法。首先,利用空洞卷积扩大感受野,并结合特征复用策略增强网络的区域感知能力。接着,嵌入两阶段的PBRA注意力... 针对语义分割网络参数量过大导致其难以部署在内存受限的边缘设备等问题,本文提出一种基于BiLevelNet的轻量级实时语义分割算法。首先,利用空洞卷积扩大感受野,并结合特征复用策略增强网络的区域感知能力。接着,嵌入两阶段的PBRA注意力机制,建立远距离相关物体之间的依赖关系以增强网络的全局感知能力。最后,引入结合浅层特征的FADE算子以改善图像上采样效果。实验结果表明,在输入图像分辨率为512×1024的情况下,本文网络在Cityscapes数据集上以121 f/s的速率获得了75.1%的平均交并比,模型大小仅为0.7 M。同时在输入图像分辨率为360×480的情况下,在Camvid数据集上取得68.2%的平均交并比。同当前其他实时语义分割方法相比,该网络性能取得速度与精度的均衡,符合自动驾驶应用场景对实时性的要求。 展开更多
关键词 实时语义分割 自动驾驶 深度学习 自注意力 上采样
下载PDF
基于YOLOv7-tiny的轻量级苹果实时检测算法
19
作者 蒋兴宇 黄娟 +2 位作者 顾寄南 范天浩 王化佳 《中国农机化学报》 北大核心 2024年第11期228-233,共6页
针对苹果生长所处的自然环境复杂程度高、网络模型过大、难以在移动端部署等问题,提出一种基于YOLOv7-tiny的轻量级苹果实时检测方法。该方法引入CG-Block模块代替原YOLOv7-tiny网络的部分卷积,对原网络的ELAN-tiny结构进行修改,极大地... 针对苹果生长所处的自然环境复杂程度高、网络模型过大、难以在移动端部署等问题,提出一种基于YOLOv7-tiny的轻量级苹果实时检测方法。该方法引入CG-Block模块代替原YOLOv7-tiny网络的部分卷积,对原网络的ELAN-tiny结构进行修改,极大地减少网络规模,并提高检测精度;使用Mish激活函数代替原激活函数,增强网络的提取特征能力;采用CARAFE轻量级上采样算子,进一步提升网络的特征融合能力。试验结果表明,改进后的算法与原算法相比,mAP@0.5提高1.9%,准确率提高4.1%,参数量降低45.4%,计算量降低46.2%,模型规模减少43.9%,FPS达到196.1 f/s。改进后的算法在保持良好实时性的同时,提升检测精度,极大地降低网络规模,为网络模型在移动端部署增添可行性。 展开更多
关键词 苹果 轻量级 实时检测 激活函数 上采样算子 移动端部署
下载PDF
基于改进YOLOv7的PCB缺陷检测算法
20
作者 张旭 陈慈发 董方敏 《计算机工程》 CAS CSCD 北大核心 2024年第12期318-328,共11页
在PCB缺陷检测领域中检测精度的提高一直是1个具有挑战性的任务。为了解决这个问题,提出一系列基于PCB缺陷检测的改进方法。首先,引入一种新的注意力机制,即BiFormer注意力机制,这种机制利用双层路由实现动态的稀疏注意力,从而减少计算... 在PCB缺陷检测领域中检测精度的提高一直是1个具有挑战性的任务。为了解决这个问题,提出一系列基于PCB缺陷检测的改进方法。首先,引入一种新的注意力机制,即BiFormer注意力机制,这种机制利用双层路由实现动态的稀疏注意力,从而减少计算量;其次,采用一种创新的上采样算子CARAFE,能够结合语义信息与内容信息进行上采样,使得上采样过程更加全面且高效;最后,基于MPDIoU度量采用一种新的损失函数,即LMPDIoU损失函数,能够有效地处理不平衡类别、小目标和密集性问题,从而进一步提高图像检测的性能。实验结果表明,所提改进后的模型在平均精度均值(mAP)方面取得了显著提高,达到了93.91%,与原YOLOv5模型相比提高了13.12个百分点,同时,在识别精度方面,所提改进后的模型表现也非常出色,达到了90.55%,与原YOLOv5模型相比提高了8.74个百分点。引入BiFormer注意力机制、CARAFE上采样算子以及LMPDIoU损失函数,对于提高PCB缺陷检测的精度和效率具有非常积极的作用,为工业检测领域的研究提供了有价值的参考。 展开更多
关键词 PCB缺陷 BiFormer注意力机制 MPDIoU损失函数 上采样算子CARAFE 目标检测
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部