期刊文献+
共找到229篇文章
< 1 2 12 >
每页显示 20 50 100
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
1
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
2
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 Deep learning Military application Targets stealth network Mask generation generative adversarial network
下载PDF
Evaluation of Modern Generative Networks for EchoCG Image Generation
3
作者 Sabina Rakhmetulayeva Zhandos Zhanabekov Aigerim Bolshibayeva 《Computers, Materials & Continua》 SCIE EI 2024年第12期4503-4523,共21页
The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography image... The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography images(echoCG)using state-of-the-art generative models.We conduct a comprehensive evaluation of three prominent methods:Cycle-consistent generative adversarial network(CycleGAN),Contrastive Unpaired Translation(CUT),and Stable Diffusion 1.5 with Low-Rank Adaptation(LoRA).Our research presents the data generation methodol-ogy,image samples,and evaluation strategy,followed by an extensive user study involving licensed cardiologists and surgeons who assess the perceived quality and medical soundness of the generated images.Our findings indicate that Stable Diffusion outperforms both CycleGAN and CUT in generating images that are nearly indistinguishable from real echoCG images,making it a promising tool for augmenting medical datasets.However,we also identify limitations in the synthetic images generated by CycleGAN and CUT,which are easily distinguishable as non-realistic by medical professionals.This study highlights the potential of diffusion models in medical imaging and their applicability in addressing data scarcity,while also outlining the areas for future improvement. 展开更多
关键词 Synthetic image generation synthetic echogcardiography generative adversarial networks CycleGAN latent diffusion models stable diffusion
下载PDF
ALGORITHMS FOR TETRAHEDRAL NETWORK(TEN) GENERATION 被引量:11
4
作者 LI Qingquan LI Deren 《Geo-Spatial Information Science》 2000年第1期11-16,共6页
The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN appli... The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Although a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed. 展开更多
关键词 3-D GIS tetrahedral network(TEN) generation algorithm
下载PDF
Evolution of network from node division and generation 被引量:3
5
作者 孙会君 吴建军 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1581-1585,共5页
Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the gr... Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the growth of a network. A broad scale characteristic which is independent of the initial network topology is obtained with the proposed model. By simulating, it is found that preferential attachment causes the appearance of the scale-free characteristic, while the dividing will decrease the power-law behaviour and drive the evolution of broad scale networks. 展开更多
关键词 EVOLUTION dividing generation scale-free network
下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:4
6
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries Physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
An Enhanced GAN for Image Generation
7
作者 Chunwei Tian Haoyang Gao +1 位作者 Pengwei Wang Bob Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期105-118,共14页
Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation... Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation. 展开更多
关键词 generative adversarial networks spatial attention mixed loss image generation
下载PDF
A Location Trajectory Privacy Protection Method Based on Generative Adversarial Network and Attention Mechanism
8
作者 Xirui Yang Chen Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第12期3781-3804,共24页
User location trajectory refers to the sequence of geographic location information that records the user’s movement or stay within a period of time and is usually used in mobile crowd sensing networks,in which the us... User location trajectory refers to the sequence of geographic location information that records the user’s movement or stay within a period of time and is usually used in mobile crowd sensing networks,in which the user participates in the sensing task,the process of sensing data collection faces the problem of privacy leakage.To address the privacy leakage issue of trajectory data during uploading,publishing,and sharing when users use location services on mobile smart group sensing terminal devices,this paper proposes a privacy protection method based on generative adversarial networks and attention mechanisms(BiLS-A-GAN).The method designs a generator attention model,GAttention,and a discriminator attention model,DAttention.In the generator,GAttention,combined with a bidirectional long short-term memory network,more effectively senses contextual information and captures dependencies within sequences.The discriminator uses DAttention and the long short-term memory network to distinguish the authenticity of data.Through continuous interaction between these two models,trajectory data with the statistical characteristics of the original data is generated.This non-original trajectory data can effectively reduce the probability of an attacker’s identification,thereby enhancing the privacy protection of user information.Reliability assessment of the Trajectory-User Linking(TUL)task performed on the real-world semantic trajectory dataset Foursquare NYC,compared with traditional privacy-preserving algorithms that focus only on the privacy enhancement of the data,this approach,while achieving a high level of privacy protection,retains more temporal,spatial,and thematic features from the original trajectory data,to not only guarantee the user’s personal privacy,but also retain the reliability of the information itself in the direction of geographic analysis and other directions,and to achieve the win-win purpose of both data utilization and privacy preservation. 展开更多
关键词 Privacy protection trajectory generation generative adversarial networks attention mechanism location trajectory
下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
9
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 Wind power Monthly generation forecast Climate model LSTM neural network
下载PDF
Maximum Data Generation Rate Routing Protocol Based on Data Flow Controlling Technology for Rechargeable Wireless Sensor Networks 被引量:2
10
作者 Demin Gao Shuo Zhang +2 位作者 Fuquan Zhang Xijian Fan Jinchi Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第5期649-667,共19页
For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanentl... For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks. 展开更多
关键词 Wireless sensor networks maximum data generation rate rechargeable-WSNs
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
11
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control 被引量:1
12
作者 董海鹰 孙传华 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期173-177,共5页
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ... For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved. 展开更多
关键词 wind power generation power control PID adaptive oontroi neural network
下载PDF
Mesh Generation from Dense 3D Scattered Data Using Neural Network 被引量:8
13
作者 ZHANGWei JIANGXian-feng +1 位作者 CHENLi-neng MAYa-liang 《Computer Aided Drafting,Design and Manufacturing》 2004年第1期30-35,共6页
An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scatt... An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained. 展开更多
关键词 reverse engineering mesh generation neural network scattered points data extraction
下载PDF
Automatic Code Generation for Android Applications Based on Improved Pix2code
14
作者 Donglan Zou Guangsheng Wu 《Journal of Artificial Intelligence and Technology》 2024年第4期325-331,共7页
With the expansion of the Internet market,the traditional software development method has been difficult to meet the market demand due to the problems of long development cycle,tedious work,and difficult system mainte... With the expansion of the Internet market,the traditional software development method has been difficult to meet the market demand due to the problems of long development cycle,tedious work,and difficult system maintenance.Therefore,to improve software development efficiency,this study uses residual networks and bidirectional long short-term memory(BLSTM)networks to improve the Pix2code model.The experiment results show that after improving the visual module of the Pix2code model using residual networks,the accuracy of the training set improves from 0.92 to 0.96,and the convergence time is shortened from 3 hours to 2 hours.After using a BLSTM network to improve the language module and decoding layer,the accuracy and convergence speed of the model have also been improved.The accuracy of the training set grew from 0.88 to 0.92,and the convergence time was shortened by 0.5 hours.However,models improved by BLSTM networks might exhibit overfitting,and thus this study uses Dropout and Xavier normal distribution to improve the memory network.The results validate that the training set accuracy of the optimized BLSTM network remains around 0.92,but the accuracy of the test set has improved to a maximum of 85%.Dropout and Xavier normal distributions can effectively improve the overfitting problem of BLSTM networks.Although they can also decrease the model’s stability,their gain is higher.The training and testing accuracy of the Pix2code improved by residual network and BLSTM network are 0.95 and 0.82,respectively,while the code generation accuracy of the original Pix2code is only 0.77.The above data indicate that the improved Pix2code model has improved the accuracy and stability of code automatic generation. 展开更多
关键词 automatic code generation deep learning long short-term memory network Pix2code residual network
下载PDF
Network Traffic Generation Based on Statistical Packet-Level Characteristics
15
作者 WANG Dongbin ZHUO Weihan +2 位作者 ZHANG Junhui WU Kexin OUYANG Wen 《China Communications》 SCIE CSCD 2015年第S2期144-148,共5页
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time... Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar. 展开更多
关键词 network TRAFFIC generation packet-level TRAFFIC CHARACTERISTICS
下载PDF
ReinforcementBased Fuzzy Neural Network Control with Automatic Rule Generation
16
作者 WU Geng feng DONG Jian quan CHEN Yi min CAO Min ZHANG Yue (School of Computer Engineering and Science, Shanghai University) FU Zhong qian (University of Science and Technology of China) 《Advances in Manufacturing》 SCIE CAS 1999年第4期282-286,共5页
A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the... A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation. 展开更多
关键词 reinforcement learning fuzzy neural network rule generation
下载PDF
Network Traffic Signature Generation Mechanism Using Principal Component Analysis
17
作者 牟澄 黄小红 +1 位作者 吴军 马严 《China Communications》 SCIE CSCD 2013年第11期95-106,共12页
The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.Howev... The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.However,the major limitation of DPI systems is that their signature library is mainly extracted manually,which makes it hard to efficiently obtain the signature of new applications.Hence,in this paper,we propose an automatic signature extraction mechanism using Principal Component Analysis(PCA)technology,which is able to extract the signature automatically.In the proposed method,the signatures are expressed in the form of serial consistent sequences constructed by principal components instead of normally separated substrings in the original data extracted from the traditional methods.Extensive experiments based on numerous sets of data have been carried out to evaluate the performance of the proposed scheme,and the results prove that the newly proposed method can achieve good performance in terms of accuracy and efficiency. 展开更多
关键词 network traffic classification aut-omatic signature generation deep packet in-spection principal component analysis
下载PDF
Unified Model for Generation Complex Networks with Utility Preferential Attachment
18
作者 WU Jian-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1X期183-186,共4页
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structu... In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given. 展开更多
关键词 generation complex networks utility preferential attachment
下载PDF
Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation
19
作者 Saurabh Awasthi Gagan Singh Nafees Ahamad 《Energy Engineering》 EI 2023年第4期811-829,共19页
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab... A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults. 展开更多
关键词 Distribution network distributed generation power system modeling fault identification neural network renewable energy systems
下载PDF
Cost Effective Scheme for OLT in Next Generation Passive Optical Access Network Based on Noise Free Optical Multi Carrier
20
作者 Rahat Ullah Bo Liu +8 位作者 Qi Zhang Qinghua Tian Amjad Ali Yousaf Khan Feng Tian M.Azam Zia Haseeb Ahmad Lijia Zhang Xiangjun Xin 《China Communications》 SCIE CSCD 2016年第6期76-87,共12页
We propos e a cos t-effective multi-carrier generation technique which minimizes the passive optical access network(PON) costs. In this study replacement of laser array with multi-carrier source at optical line termin... We propos e a cos t-effective multi-carrier generation technique which minimizes the passive optical access network(PON) costs. In this study replacement of laser array with multi-carrier source at optical line terminal(OLT) side in PON is addressed. With 25-GHz frequency spacing, the generated optical multi-carriers exhibit good tone to noise ratio(TNR) i. e. above 20 d B, and least amplitude difference i. e. 1.5d B. At the OLT, multi-carriers signal based multiplexed differential phase shift keying(DPSK) data from all the channels each having 10 Gbps for downlink is transmitted through 25 km single mode fiber. While the transmitted information is retrieved at optical network unit(ONU), part of the downlink signal is re-modulated using intensity modulated(IM) on-off keying(OOK) for upstream transmission at 10-Gbps. Simulation results are in good agreement with the theoretical analysis, showing error free transmission in downlink and uplink with 10 Gbps symmetric data rate at each channel. The receivedpower, both for uplink and downlink transmission, is adequate for all channels at BER of 10-9 with minimum power penalties. Power budget is calculated for different splitting ratios showing excellent system margins for any unseen losses. The proposed setup provides a cost-effective way minimizing transmission losses, and providing greater system's margin in PON architecture. 展开更多
关键词 differential phase shift keying intensity modulated on-off-keying optical frequency comb generation optical access network
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部