This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this explorati...This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.展开更多
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ...To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.展开更多
In the scene of wideband radar,due to the spread of target scattering points,the attitude and angle of view of the target constantly change in the process of moving.It is difficult to predict,and the actual echo of mu...In the scene of wideband radar,due to the spread of target scattering points,the attitude and angle of view of the target constantly change in the process of moving.It is difficult to predict,and the actual echo of multiple scattered points is not fully matched with the transmitted signal.Therefore,it is challenging for the traditional matching filter method to achieve a complete matching effect in wideband echo detection.In addition,the energy dispersion of complex target echoes is still a problem in radar target detection under broadband conditions.Therefore,this paper proposes a wideband target detection method based on dualchannel correlation processing of range-extended targets.This method fully uses the spatial distribution characteristics of target scattering points of echo signal and the matching characteristics of the dual-channel point extension function itself.The radial accumulation of wideband target echo signal in the complex domain is realized through the adaptive correlation processing of a dual-channel echo signal.The accu-mulation effect of high matching degree is achieved to improve the detection probability and the performance of wideband detection.Finally,electromagnetic simulation experiments and measured data verify that the proposed method has the advan-tages of high signal to noise ratio(SNR)gain and high detection probability under low SNR conditions.展开更多
Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certain...Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.展开更多
With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
This paper proposes a new method of selecting appropriate buyer supplier relationships (BSR) for specific projects. Because it is almost impossible in reality to establish mathematical relationships between the BSR at...This paper proposes a new method of selecting appropriate buyer supplier relationships (BSR) for specific projects. Because it is almost impossible in reality to establish mathematical relationships between the BSR attributes and the factors of a project, the concept of relationship indices (RI) is introduced to quantify such BSR which are in turn established through design of experiments. Based on the experimental results, the contributions of project factors, known as factors relationship worths (RW...展开更多
基金This work was supported by the Humanities and Social Science Fund of Ministry of Education of China(No.20YJA630009)Shandong Natural Science Foundation of China(No.ZR2022MG002).
文摘This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.
基金supported by the National Natural Science Foundation of China (Grant No. 61705025)the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxm X043 and cstc2018jcyj AX0817)+2 种基金the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247)the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08)。
文摘To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
文摘In the scene of wideband radar,due to the spread of target scattering points,the attitude and angle of view of the target constantly change in the process of moving.It is difficult to predict,and the actual echo of multiple scattered points is not fully matched with the transmitted signal.Therefore,it is challenging for the traditional matching filter method to achieve a complete matching effect in wideband echo detection.In addition,the energy dispersion of complex target echoes is still a problem in radar target detection under broadband conditions.Therefore,this paper proposes a wideband target detection method based on dualchannel correlation processing of range-extended targets.This method fully uses the spatial distribution characteristics of target scattering points of echo signal and the matching characteristics of the dual-channel point extension function itself.The radial accumulation of wideband target echo signal in the complex domain is realized through the adaptive correlation processing of a dual-channel echo signal.The accu-mulation effect of high matching degree is achieved to improve the detection probability and the performance of wideband detection.Finally,electromagnetic simulation experiments and measured data verify that the proposed method has the advan-tages of high signal to noise ratio(SNR)gain and high detection probability under low SNR conditions.
基金funded by the Fundamental Research Grant Scheme under the Ministry of Higher Education Malaysia FRGS/1/2019/STG06/UMP/02/9.
文摘Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
文摘This paper proposes a new method of selecting appropriate buyer supplier relationships (BSR) for specific projects. Because it is almost impossible in reality to establish mathematical relationships between the BSR attributes and the factors of a project, the concept of relationship indices (RI) is introduced to quantify such BSR which are in turn established through design of experiments. Based on the experimental results, the contributions of project factors, known as factors relationship worths (RW...