This paper concerned with the quantized synchronization analysis problem. The scope of state vectors of dynamic systems, based on the matrix measure, is estimated. By using the general intermittent control, some simpl...This paper concerned with the quantized synchronization analysis problem. The scope of state vectors of dynamic systems, based on the matrix measure, is estimated. By using the general intermittent control, some simple yet generic criteria are derived ensuring the exponential stability of dynamic systems. Then, both the general intermittent networked controller and the quantized parameters can be designed, which guarantee that the nodes of the complex network are synchronized. Finally, simulation examples are given to illustrate the effectiveness and feasibility of the proposed method.展开更多
Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the to...Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the topology, synchronization between nodes has become a critical issue which needs to be studied. The existing synchronization methods largely depend on the complex communication protocol. Therefore, this paper has proposed a method of automatic measurement and compensation of synchronization delay, and analyzed its operating principle and implementation procedure in detail. The results obtained from the experiments prove the proposed method to be correct, effective and practicable.展开更多
In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of...In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.展开更多
The design of reliable controllers for wind energy conversion systems(WECSs)requires a dynamic model and accurate parameters of the wind generator.In this paper,a dynamic model and the parameter measurement and contro...The design of reliable controllers for wind energy conversion systems(WECSs)requires a dynamic model and accurate parameters of the wind generator.In this paper,a dynamic model and the parameter measurement and control of a direct-drive variable-speed WECS with a permanent magnet synchronous generator(PMSG)are presented.An experimental method is developed for measuring the key parameters of the PMSG.The measured parameters are used in the design of the controllers.The generator-side converter is controlled using a vector control scheme that maximizes the power extraction under varying wind speeds.A model predictive controller(MPC)is designed for the grid-side voltage source converter(VSC)to regulate the active and reactive power flows to the power grid by controlling the d-and q-axis currents in the synchronous reference frame.The MPC predicts the future values of the control variables and takes control actions based on the minimum value of the cost functions.To comply with the grid code requirement,a modified design approach for an LCL filter is presented and incorporated into the system.The design process is simple and incorporates significant filter parameters while avoiding iterative calculations.The comparative analysis of the designed filter with conventional L,LC,and iterative LCL filters demonstrates the effectiveness of the modified design approach.The proposed wind energy system with MPC and LCL filter is simulated in MATLAB/Simulink and experimentally implemented in the laboratory using the dSpace digital signal processor(DSP)system.The simulation and experimental results validate the efficacy of the designed controllers using the measured parameters and show dynamic and steady-state performance under varying wind speeds.展开更多
Based on the nonlinear measure about /-norm,a novel and effective approach is applied to estimate the scope of state vectors of dynamic systems.By the general intermittent control,some simple yet generic criteria are ...Based on the nonlinear measure about /-norm,a novel and effective approach is applied to estimate the scope of state vectors of dynamic systems.By the general intermittent control,some simple yet generic criteria are derived ensuring the exponential stability of dynamic systems.The numerical simulations,whose theoretical results are applied to robust synchronization of complex networks,demonstrate the effectiveness and feasibility of the proposed technique.展开更多
文摘This paper concerned with the quantized synchronization analysis problem. The scope of state vectors of dynamic systems, based on the matrix measure, is estimated. By using the general intermittent control, some simple yet generic criteria are derived ensuring the exponential stability of dynamic systems. Then, both the general intermittent networked controller and the quantized parameters can be designed, which guarantee that the nodes of the complex network are synchronized. Finally, simulation examples are given to illustrate the effectiveness and feasibility of the proposed method.
文摘Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the topology, synchronization between nodes has become a critical issue which needs to be studied. The existing synchronization methods largely depend on the complex communication protocol. Therefore, this paper has proposed a method of automatic measurement and compensation of synchronization delay, and analyzed its operating principle and implementation procedure in detail. The results obtained from the experiments prove the proposed method to be correct, effective and practicable.
文摘In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.
文摘The design of reliable controllers for wind energy conversion systems(WECSs)requires a dynamic model and accurate parameters of the wind generator.In this paper,a dynamic model and the parameter measurement and control of a direct-drive variable-speed WECS with a permanent magnet synchronous generator(PMSG)are presented.An experimental method is developed for measuring the key parameters of the PMSG.The measured parameters are used in the design of the controllers.The generator-side converter is controlled using a vector control scheme that maximizes the power extraction under varying wind speeds.A model predictive controller(MPC)is designed for the grid-side voltage source converter(VSC)to regulate the active and reactive power flows to the power grid by controlling the d-and q-axis currents in the synchronous reference frame.The MPC predicts the future values of the control variables and takes control actions based on the minimum value of the cost functions.To comply with the grid code requirement,a modified design approach for an LCL filter is presented and incorporated into the system.The design process is simple and incorporates significant filter parameters while avoiding iterative calculations.The comparative analysis of the designed filter with conventional L,LC,and iterative LCL filters demonstrates the effectiveness of the modified design approach.The proposed wind energy system with MPC and LCL filter is simulated in MATLAB/Simulink and experimentally implemented in the laboratory using the dSpace digital signal processor(DSP)system.The simulation and experimental results validate the efficacy of the designed controllers using the measured parameters and show dynamic and steady-state performance under varying wind speeds.
基金supported by Project of Shandong Province Higher Educational Science and Technology Program(J13LI02)Research Fund Project of Heze University under Grant:XY10KZ01
文摘Based on the nonlinear measure about /-norm,a novel and effective approach is applied to estimate the scope of state vectors of dynamic systems.By the general intermittent control,some simple yet generic criteria are derived ensuring the exponential stability of dynamic systems.The numerical simulations,whose theoretical results are applied to robust synchronization of complex networks,demonstrate the effectiveness and feasibility of the proposed technique.