Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the ox...The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.展开更多
Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study...Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.展开更多
Fuel injectors are considered as an important component of combustion engines. Operational weakness can possibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To o...Fuel injectors are considered as an important component of combustion engines. Operational weakness can possibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To overcome these circumstances, various condition monitoring techniques can be applied. The application of acoustic signals is common in the field of fault diagnosis of rotating machinery. Advanced signal processing is utilized for the construction of features that are specialized in detecting fuel injector faults. A performance comparison between novelty detection algorithms in the form of one-class classifiers is presented. The one-class classifiers that were tested included One-Class Support Vector Machine (OCSVM) and One-Class Self Organizing Map (OCSOM). The acoustic signals of fuel injectors in different operational conditions were processed for feature extraction. Features from all the signals were used as input to the one-class classifiers. The one-class classifiers were trained only with healthy fuel injector conditions and compared with new experimental data which belonged to different operational conditions that were not included in the training set so as to contribute to generalization. The results present the effectiveness of one-class classifiers for detecting faults in fuel injectors.展开更多
The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and ...The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and two for the EAST neutral-beam injectors(NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 ke V was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.展开更多
<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior ...<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior capsule and zonular dialysis, it takes time to train paramedic teams to assemble such IOLs with the manual injectors. Moreover, there is a potential risk of comtamination and endophthalmitis as there is manipulation of the IOL and cartridge. The preloaded IOLs tend to reduce those unwanted results and may optimize the surgical time. <strong>Purpose:</strong> The aim of this study is to compare the effectiveness and implantation time between three injectors and three intraocular lenses, two pre-loaded and one conventional. <strong>Methodology:</strong> Videos of thirty patients undergoing cataract surgery from December 2019 to December 2020 at the Hospital Oftalmológico de Brasília (HOB), Brasília, Brazil were included in this observational, analytical retrospective study, non randomized. All patients had their surgeries recorded, from which the time of injection and opening of the intraocular lens (IOL) was extracted, 20 eyes were implanted with preloaded intraocular lens, and 10 eyes with conventional IOL implant. The patients were divided into three groups with similar eye characteristics. The first received the AutonoMe<sup>TM</sup> (CE) injector with the Clareon<span style="white-space:nowrap;"><sup>®</sup></span><span style="font-size:10px;"> </span><span style="white-space:nowrap;"><span style="color:#FFFFFF;font-family:Roboto, "white-space:normal;background-color:#D46399;"><span style="white-space:nowrap;"></span></span></span>IOL, the second the Isert<sup>TM</sup> injector (I) with the Hoya<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> IOL, and the third was injected with Johnson & Johnson Platinum 1 Series injector used to deliver Sensar<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> One AAB00 lens. The Welch test and Tukey’s Post Hoc test were used in the statistical analysis. <strong>Results:</strong> It was observed that there was a statistical significance regarding the presence of a haptic stuck (5 Clareon vs 0 Sensar and Hoya), between the mean opening time of the IOL optics Sensar One, Hoya and Clareon (25.00 vs 31.40 vs 11.70 s, p < 0.001) and between the total time (the injection time more the opening time of the IOL) in relation to Hoya and Clareon lenses (39.50 s vs 19.60 s, p < 0.001);the total time of the Sensar IOL was 31.30 s. The opening time of the IOL optics was significantly longer for the Sensar One and Hoya groups compared to Clareon group, and the total time of Hoya group was significantly longer compared to the total time of the Clareon group. <strong>Conclusion:</strong> The study demonstrated that the choice of injector and IOL set can significantly affect the total time of IOL implantation. However, there was no difference regarding complications and collateral damage depending on the set chosen for the implant.展开更多
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a dr...A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.展开更多
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009702504)
文摘The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.
文摘Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.
文摘Fuel injectors are considered as an important component of combustion engines. Operational weakness can possibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To overcome these circumstances, various condition monitoring techniques can be applied. The application of acoustic signals is common in the field of fault diagnosis of rotating machinery. Advanced signal processing is utilized for the construction of features that are specialized in detecting fuel injector faults. A performance comparison between novelty detection algorithms in the form of one-class classifiers is presented. The one-class classifiers that were tested included One-Class Support Vector Machine (OCSVM) and One-Class Self Organizing Map (OCSOM). The acoustic signals of fuel injectors in different operational conditions were processed for feature extraction. Features from all the signals were used as input to the one-class classifiers. The one-class classifiers were trained only with healthy fuel injector conditions and compared with new experimental data which belonged to different operational conditions that were not included in the training set so as to contribute to generalization. The results present the effectiveness of one-class classifiers for detecting faults in fuel injectors.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101003)National Natural Science Foundation of China(No.11505225)Foundation of ASIPP(No.DSJJ-15-GC03)
文摘The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and two for the EAST neutral-beam injectors(NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 ke V was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.
文摘<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior capsule and zonular dialysis, it takes time to train paramedic teams to assemble such IOLs with the manual injectors. Moreover, there is a potential risk of comtamination and endophthalmitis as there is manipulation of the IOL and cartridge. The preloaded IOLs tend to reduce those unwanted results and may optimize the surgical time. <strong>Purpose:</strong> The aim of this study is to compare the effectiveness and implantation time between three injectors and three intraocular lenses, two pre-loaded and one conventional. <strong>Methodology:</strong> Videos of thirty patients undergoing cataract surgery from December 2019 to December 2020 at the Hospital Oftalmológico de Brasília (HOB), Brasília, Brazil were included in this observational, analytical retrospective study, non randomized. All patients had their surgeries recorded, from which the time of injection and opening of the intraocular lens (IOL) was extracted, 20 eyes were implanted with preloaded intraocular lens, and 10 eyes with conventional IOL implant. The patients were divided into three groups with similar eye characteristics. The first received the AutonoMe<sup>TM</sup> (CE) injector with the Clareon<span style="white-space:nowrap;"><sup>®</sup></span><span style="font-size:10px;"> </span><span style="white-space:nowrap;"><span style="color:#FFFFFF;font-family:Roboto, "white-space:normal;background-color:#D46399;"><span style="white-space:nowrap;"></span></span></span>IOL, the second the Isert<sup>TM</sup> injector (I) with the Hoya<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> IOL, and the third was injected with Johnson & Johnson Platinum 1 Series injector used to deliver Sensar<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> One AAB00 lens. The Welch test and Tukey’s Post Hoc test were used in the statistical analysis. <strong>Results:</strong> It was observed that there was a statistical significance regarding the presence of a haptic stuck (5 Clareon vs 0 Sensar and Hoya), between the mean opening time of the IOL optics Sensar One, Hoya and Clareon (25.00 vs 31.40 vs 11.70 s, p < 0.001) and between the total time (the injection time more the opening time of the IOL) in relation to Hoya and Clareon lenses (39.50 s vs 19.60 s, p < 0.001);the total time of the Sensar IOL was 31.30 s. The opening time of the IOL optics was significantly longer for the Sensar One and Hoya groups compared to Clareon group, and the total time of Hoya group was significantly longer compared to the total time of the Clareon group. <strong>Conclusion:</strong> The study demonstrated that the choice of injector and IOL set can significantly affect the total time of IOL implantation. However, there was no difference regarding complications and collateral damage depending on the set chosen for the implant.
基金supported by the Ministry of Science,ICT and Future Planning of the Republic of Korea under the ITER Technology R&D ProgramNational R&D Program Through the National Research Foundation of Korea(NRF)Funded by the Ministry of Science,ICT&Future Planning(NRF-2014M1A7A1A03045372)
文摘A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.