期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合时间序列趋势的Dual-ESN机组负荷预测模型 被引量:2
1
作者 樊建升 吴海滨 刘泽军 《电力系统及其自动化学报》 CSCD 北大核心 2023年第1期152-158,共7页
针对传统模型在机组负荷预测中无法充分捕获内部多变量演化模式的问题,提出了一种基于时间序列的趋势和数值信息融合的双重回声状态网络Dual-ESN(dual-echo state network)机组负荷动态预测模型。首先,引入最小二乘法,对相关的多元历史... 针对传统模型在机组负荷预测中无法充分捕获内部多变量演化模式的问题,提出了一种基于时间序列的趋势和数值信息融合的双重回声状态网络Dual-ESN(dual-echo state network)机组负荷动态预测模型。首先,引入最小二乘法,对相关的多元历史信息按照局部时间跨度进行趋势拟合。进一步,得到有关过程变化的模式序列,并和原本的数值分别被送入两个独立的储备池,以并行的时间维度进行特征学习。其次,将隐层的高维空间状态送入输出层,融合信息,得到所需要的预测结果。最后,基于山西某工厂660 MW机组装置的真实数据集,进行验证。对比已有预测方法,结果表明所提预测模型在多种性能指标上均有提升。 展开更多
关键词 机组负荷预测 双重回声状态网络 时间序列趋势 最小二乘法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部