The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structu...The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.展开更多
The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed...The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed for the comparison study of different flow structures. The full steady flow fields of an industrial centrifugal pump working on-design and off-design points were numerically investigated by solving Reynolds average Navier-Stokes equations together with a shear-stress transport(SST) k-? turbulence model. And the numerically predicted performance curves of the studied pump agree well with test measurement results. Compared with the flow flied on design point under the help of differential amplification method, the disturbance caused by interaction between blade and volute tongue is very obvious and it extends to the diffuser pipe on the working point with 0.8 times rated flux. While on the point with 1.2 times rated flux, the flow distribution in impeller region is roughly even and it flows more to the bottom section of the diffuser pipe. The above method was proved to be good at displaying the subtle secondary flow structure changes with a higher resolution effect relative to single isolated case observation, which helps the optimization decision-making from multiple design cases.展开更多
The title compound, trans 4 [p (N ethyl N (hydroxyethyl)amino) styryl] N methylpyridinium tetraphenylborate(abbreviated as ESMT, C 46 H 49 N 4OB) crystallizes in a space group P 1 with ...The title compound, trans 4 [p (N ethyl N (hydroxyethyl)amino) styryl] N methylpyridinium tetraphenylborate(abbreviated as ESMT, C 46 H 49 N 4OB) crystallizes in a space group P 1 with a =0 983 23(15) nm, b =1 410 73(16) nm, c =1 54 21(12) nm, α=95 252(13)°, β= 91 959(17)°, γ= 107 421(12)°, Z=2, F(000)=712, μ =0 1 mm -1 Mo Kα radiation, R =0 093 8. The result shows that the cation of the molecule almost lies in one plane, the hydroxyethyl group is perpendicular to the plane, the anion takes a slight distorted tetrahedral geometry. Also the thermal stability, two photon fluorescence, two photon pumped lasing property for the title compound were studied.展开更多
Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under ...Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under di erent cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the e ects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The di erent cavitation states are mapped in the head-net positive suction head(H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The e ect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the e ects of cavitation on pump flow and structural behaviors.展开更多
In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain mov...In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain moves between the driving sprocket and upper sprocket which are vertically set.There's a special chain element in the locus chain,which drives the reciprocating holster with the main shaft linchpin and slide block.The r reciprocating g holster could only move up and down when the locus chain moves in a circle.In this way the up and down stroke of the sucker rod and the mac hine is realized.The lower end of the reciprocating holster is con-nected with the equilibrium system to make the structure balance.The balancing cylinder is re-placed by the balancing block to make the structure simplified.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal struc...A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.展开更多
Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show e...Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show excellent perfor?mance in avoiding air?release and cavitation. This study aims to reduce the noise emitted from an axial piston pump using a novel valve plate utilizing damping holes. A dynamic pump model is developed,in which the fluid properties are carefully modeled to capture the phenomena of air release and cavitation. The causes of di erent noise sources are investigated using the model. A comprehensive parametric analysis is conducted to enhance the understanding of the e ects of the valve plate parameters on the noise sources. A multi?objective genetic algorithm optimization method is proposed to optimize the parameters of valve plate. The amplitudes of the swash plate moment and flow rates in the inlet and outlet ports are defined as the objective functions. The pressure overshoot and undershoot in the piston chamber are limited by properly constraining the highest and lowest pressure values. A comparison of the various noise sources between the original and optimized designs over a wide range of pressure levels shows that the noise sources are reduced at high pressures. The results of the sound pressure level measurements show that the optimized valve plate reduces the noise level by 1.6 d B(A) at the rated working condition. The proposed method is e ective in reducing the noise of axial piston pumps and contributes to the development of quieter axial piston machines.展开更多
Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that p...Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.展开更多
Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. ...Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. New results are obtained from the analysis of turbulence kinetic energy and relative velocity distribution: Firstly, unreasonable length or deviation design of the splitter blades may cause great turbulent fluctuation in impeller channel, which has a great effect on the stability of impeller outlet flow; Secondly, it is found that the occurrence of flow separation can be decreased or delayed with splitter blades from the analysis of blade loading; Thirdly, the effect of splitter blades on reforming the structure of "jet-wake" is explained from the relative velocity distribution at different flow cross-sections, which shows the flow process in the impeller. The inner flow analysis verifies the results of performance tests results and the PIV test.展开更多
Computational fluid dynamics(CFD)simulations of multi-lobe progressive cavity(PC)pumps are limited in the literature due to the geometric complexity of the pump,which places numerous restrictions on the grid generatio...Computational fluid dynamics(CFD)simulations of multi-lobe progressive cavity(PC)pumps are limited in the literature due to the geometric complexity of the pump,which places numerous restrictions on the grid generation process.The present study attempts to alleviate such restrictions by developing a detailed numerical procedure for the numerical simulations of multi-lobe progressive cavity pumps.The profile equations for the multi-lobe configuration at any section at each instant of rotation are presented.A structured grid generation method is developed to generate mesh files required for CFD simulations of multi-lobe PC pumps.Results from the present procedure are validated against single-lobe PC pump numerical results available in the literature.Finally,a numerical parametric study is carried out to investigate the effect of the number of lobes,the stator pitch,the circular fillet and clearance on the volumetric efficiency of PC pumps with viscous oils.展开更多
Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this ...Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-o9 turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structuxe. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.展开更多
The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturati...The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The 丨Fg = 3) →丨Fe = 4) resonance pumping can result in the ground state丨Fg = 4, mF = 4) sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line 丨Fg = 4) → 丨Fe = 3) transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.展开更多
This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm th...This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.展开更多
Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology.The surface acoustic wave serves as a one-dimensional pe...Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology.The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure.The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase.The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy.Based on this understanding,we predict a novel effect of quantized but nonmonotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves.展开更多
Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits ...Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.展开更多
The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 se...The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters,namely,the blade number,blade outlet angle,impeller outlet diameter,and impeller outlet width.Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters.The internalflowfield in the centrifugal pump has been simulated by using the PumLinx software.These numerical results have shown that,compared with the prototype pump,the outlet pressure and shaft power of the optimized pump can be significantly reduced,and the pump working efficiency can be improved by 5.59%.In the present study,some arguments are also provided to demonstrate that,with respect to other optimization methods,the orthogonal test approach is more convenient,and requires less test times.展开更多
In order to improve the performances of a cycloid gerotor pump,the variations of the radial force induced by different rotating speeds and outlet pressures are analyzed numerically.Using the numerical simulations as a...In order to improve the performances of a cycloid gerotor pump,the variations of the radial force induced by different rotating speeds and outlet pressures are analyzed numerically.Using the numerical simulations as a basis,an improved oil inlet and outlet groove structure is proposed.The results show that the radial force decreases with the decrease of the outlet pressure and of the rotor speed.Compared with the original model,the large-end oil inlet line and pressure line of the new oil groove are claw-shaped.This configuration can effectively weaken the pressure changes inside the gerotor pump and reduce accordingly the radial force on the inner rotor.展开更多
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)Jiangsu Provincial Innovative Scholars "Climbing" Project of China (Grant No. BK 2009006)+1 种基金National Natural Science Foundation of China (Grant No. 50979034)Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No. CX10B_262Z)
文摘The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.
基金Project(2014GK3150)supported by Science and Technology Plan of Hunan Province,China
文摘The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed for the comparison study of different flow structures. The full steady flow fields of an industrial centrifugal pump working on-design and off-design points were numerically investigated by solving Reynolds average Navier-Stokes equations together with a shear-stress transport(SST) k-? turbulence model. And the numerically predicted performance curves of the studied pump agree well with test measurement results. Compared with the flow flied on design point under the help of differential amplification method, the disturbance caused by interaction between blade and volute tongue is very obvious and it extends to the diffuser pipe on the working point with 0.8 times rated flux. While on the point with 1.2 times rated flux, the flow distribution in impeller region is roughly even and it flows more to the bottom section of the diffuser pipe. The above method was proved to be good at displaying the subtle secondary flow structure changes with a higher resolution effect relative to single isolated case observation, which helps the optimization decision-making from multiple design cases.
文摘The title compound, trans 4 [p (N ethyl N (hydroxyethyl)amino) styryl] N methylpyridinium tetraphenylborate(abbreviated as ESMT, C 46 H 49 N 4OB) crystallizes in a space group P 1 with a =0 983 23(15) nm, b =1 410 73(16) nm, c =1 54 21(12) nm, α=95 252(13)°, β= 91 959(17)°, γ= 107 421(12)°, Z=2, F(000)=712, μ =0 1 mm -1 Mo Kα radiation, R =0 093 8. The result shows that the cation of the molecule almost lies in one plane, the hydroxyethyl group is perpendicular to the plane, the anion takes a slight distorted tetrahedral geometry. Also the thermal stability, two photon fluorescence, two photon pumped lasing property for the title compound were studied.
基金Supported by National Natural Science Foundation of China(Grant Nos.51609212,51606167)China Postdoctoral Science Foundation(Grant No.2016M590546)Zhejiang Provincial Natural Science Foundation(Grant No.2016C31043)
文摘Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under di erent cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the e ects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The di erent cavitation states are mapped in the head-net positive suction head(H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The e ect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the e ects of cavitation on pump flow and structural behaviors.
文摘In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain moves between the driving sprocket and upper sprocket which are vertically set.There's a special chain element in the locus chain,which drives the reciprocating holster with the main shaft linchpin and slide block.The r reciprocating g holster could only move up and down when the locus chain moves in a circle.In this way the up and down stroke of the sucker rod and the mac hine is realized.The lower end of the reciprocating holster is con-nected with the equilibrium system to make the structure balance.The balancing cylinder is re-placed by the balancing block to make the structure simplified.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111 and 61137001)the Natural Science Foundation of Tianjin City,China (Grant No. 10JCZDGX35100)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034)the Fundamental Research Funds for the Central Universities of China
文摘A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.
基金Supported by National Basic Research Program of China(Grant No.2014CB046403)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ14E050005)
文摘Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show excellent perfor?mance in avoiding air?release and cavitation. This study aims to reduce the noise emitted from an axial piston pump using a novel valve plate utilizing damping holes. A dynamic pump model is developed,in which the fluid properties are carefully modeled to capture the phenomena of air release and cavitation. The causes of di erent noise sources are investigated using the model. A comprehensive parametric analysis is conducted to enhance the understanding of the e ects of the valve plate parameters on the noise sources. A multi?objective genetic algorithm optimization method is proposed to optimize the parameters of valve plate. The amplitudes of the swash plate moment and flow rates in the inlet and outlet ports are defined as the objective functions. The pressure overshoot and undershoot in the piston chamber are limited by properly constraining the highest and lowest pressure values. A comparison of the various noise sources between the original and optimized designs over a wide range of pressure levels shows that the noise sources are reduced at high pressures. The results of the sound pressure level measurements show that the optimized valve plate reduces the noise level by 1.6 d B(A) at the rated working condition. The proposed method is e ective in reducing the noise of axial piston pumps and contributes to the development of quieter axial piston machines.
基金supported by Grant-in-Aid for Japan Society for the Promotion of Science(JSPS)Fellow(17J01742)JSPS,MEXT KAKENHI(21676002,23111705,26249027,and 17H01254)the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization(NEDO)of Japan
文摘Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.
基金This project is supported by Foundation of National College Doctoral Prog-ram of China(No.20050299006).
文摘Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. New results are obtained from the analysis of turbulence kinetic energy and relative velocity distribution: Firstly, unreasonable length or deviation design of the splitter blades may cause great turbulent fluctuation in impeller channel, which has a great effect on the stability of impeller outlet flow; Secondly, it is found that the occurrence of flow separation can be decreased or delayed with splitter blades from the analysis of blade loading; Thirdly, the effect of splitter blades on reforming the structure of "jet-wake" is explained from the relative velocity distribution at different flow cross-sections, which shows the flow process in the impeller. The inner flow analysis verifies the results of performance tests results and the PIV test.
文摘Computational fluid dynamics(CFD)simulations of multi-lobe progressive cavity(PC)pumps are limited in the literature due to the geometric complexity of the pump,which places numerous restrictions on the grid generation process.The present study attempts to alleviate such restrictions by developing a detailed numerical procedure for the numerical simulations of multi-lobe progressive cavity pumps.The profile equations for the multi-lobe configuration at any section at each instant of rotation are presented.A structured grid generation method is developed to generate mesh files required for CFD simulations of multi-lobe PC pumps.Results from the present procedure are validated against single-lobe PC pump numerical results available in the literature.Finally,a numerical parametric study is carried out to investigate the effect of the number of lobes,the stator pitch,the circular fillet and clearance on the volumetric efficiency of PC pumps with viscous oils.
基金supported by National Natural Science Foundation of China(Grant Nos.51239005,51009072)National Science & Technology Pillar Program of China(Grant No.2011BAF14B04)
文摘Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-o9 turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structuxe. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.
基金Project supported by the International Cooperation Project of the Ministry of Science and Technology of China (Grant No. 2008DFR20420)the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCF20111111)
文摘The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The 丨Fg = 3) →丨Fe = 4) resonance pumping can result in the ground state丨Fg = 4, mF = 4) sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line 丨Fg = 4) → 丨Fe = 3) transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.
基金Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007)partly by the National Basic Research Program of China (973 Program)(Grant No. 61328)
文摘This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374036)the National Basic Research Program of China(Grant No.2012CB821403)
文摘Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology.The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure.The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase.The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy.Based on this understanding,we predict a novel effect of quantized but nonmonotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves.
基金the National Natural Science Foundation of China(Grant No.11904194).
文摘Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.
基金supported by the Anhui Province University Discipline(Professional)Top Talent Academic Funding Project(No.gxbjZD2021076)This project is supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province(No.KJ2021A1026)This project is supported by the Key Project of Natural Science Foundation of Chaohu University(No.XLZ-201902).
文摘The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters,namely,the blade number,blade outlet angle,impeller outlet diameter,and impeller outlet width.Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters.The internalflowfield in the centrifugal pump has been simulated by using the PumLinx software.These numerical results have shown that,compared with the prototype pump,the outlet pressure and shaft power of the optimized pump can be significantly reduced,and the pump working efficiency can be improved by 5.59%.In the present study,some arguments are also provided to demonstrate that,with respect to other optimization methods,the orthogonal test approach is more convenient,and requires less test times.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY19E050003)the National Natural Science Foundation of China(No.51779226).
文摘In order to improve the performances of a cycloid gerotor pump,the variations of the radial force induced by different rotating speeds and outlet pressures are analyzed numerically.Using the numerical simulations as a basis,an improved oil inlet and outlet groove structure is proposed.The results show that the radial force decreases with the decrease of the outlet pressure and of the rotor speed.Compared with the original model,the large-end oil inlet line and pressure line of the new oil groove are claw-shaped.This configuration can effectively weaken the pressure changes inside the gerotor pump and reduce accordingly the radial force on the inner rotor.