Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology a...Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.展开更多
The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteri...The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
Objective This study aimed to explore the feasibility of enhancing image quality in computed tomography(CT) pulmonary angiography (CTPA) and reducing radiation dose using the nonlinear blending (NLB)technique of dual-...Objective This study aimed to explore the feasibility of enhancing image quality in computed tomography(CT) pulmonary angiography (CTPA) and reducing radiation dose using the nonlinear blending (NLB)technique of dual-energy CT.Methods A total of 61 patients scheduled for CTPA were enrolled, and 30 patients underwent dual-energyscanning. Nonlinear blending images (NLB group) and three groups of linear blending images (LB group,80 kV group, and 140 kV group) were reconstructed after scanning;31 patients underwent single-energyscanning (120 kV group). The CT values and standard deviations of the pulmonary trunk, left and rightpulmonary arteries, and ipsilateral back muscle at the bifurcation level of the left and right pulmonaryarteries were measured. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the fivegroups were calculated. The subjective image quality of the five groups was assessed. The radiation dosesof the dual- and single-energy groups were recorded and calculated.Results The CNR and SNR values of blood vessels in the NLB group were significantly higher than thosein the LB, 140 kV, and 80 kV groups (CNR of pulmonary artery trunk: t = 3.50, 4.06, 7.17, all P < 0.05;SNRof pulmonary trunk: t = 3.76, 4.71, 6.92, all P < 0.05). There were no statistical differences in the CNR andSNR values between the NLB group and 120 kV group (P > 0.05). The effective radiation dose of the dualenergygroup was lower than that of the single-energy group (t = –4.52, P < 0.05). The subjective scores ofimages in the NLB group were the highest (4.28 ± 0.74).Conclusion The NLB technique of dual-energy CT can improve the image quality of CTPA and reducethe radiation dose, providing more reliable imaging data for the clinical diagnosis of pulmonary embolism.展开更多
Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Met...Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.展开更多
目的采用微焦点断层扫描(Micro-CT)评价超声骨焊接技术应用过程中超声震荡产热作用下PDLLA材料对骨愈合性能的影响。方法选择SPF级雄性新西兰大白兔36只,随机分为超声骨焊接技术辅助PDLLA材料组(A组)、拧入技术辅助PDLLA材料组(B组)、...目的采用微焦点断层扫描(Micro-CT)评价超声骨焊接技术应用过程中超声震荡产热作用下PDLLA材料对骨愈合性能的影响。方法选择SPF级雄性新西兰大白兔36只,随机分为超声骨焊接技术辅助PDLLA材料组(A组)、拧入技术辅助PDLLA材料组(B组)、假手术组(C组)、空白对照组(D组),各9只。于术后4、8、12周取下颌骨标本,周围骨组织进行HE染色,观察各组植入钉周围情况。对术后4、8、12周的下颌骨大体标本拍摄Micro-CT图,使用VG Studio MAX软件进行三维重建,摆正数据样本,即颌骨颊侧造模处为轴向,动态分析植入钉体积、植入钉周围200μm环状区及骨缺损处的植入材料体积数、相对骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数(Tb.N)、骨小梁间隙(Tb.Sp)等骨愈合相关指标。结果HE染色结果显示,按3个时间可动态观察到A、B、C组骨缺损处骨性骨痂替代纤维性骨痂,形成类骨质,编织骨的过程符合正常骨损伤愈合的过程。Micro-CT结果显示,A、B组术后3个时间点的材料体积比较差异均无统计学意义(P>0.05);在3个时间点,4组植入钉周围200μm环状区中BV/TV、Tb.Th、Tb.N、Tb.Sp比较差异均无统计学意义(P>0.05);在骨缺损处,A、B、C组三个时间点BV/TV、Tb.Th、Tb.N、Tb.Sp比较差异无统计学意义(P>0.05);术后4周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.N、Tb.Sp差异有统计学意义(P<0.05);与C组比较,A、B组Tb.N差异有统计学意义(P<0.01)。术后8周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.N、Tb.Sp差异有统计学意义(P<0.05);术后12周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.Sp差异有统计学意义(P<0.05)。结论超声骨焊接技术其超声震荡产热作用下PDLLA材料对骨愈合性能无不良影响。展开更多
文摘Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.
基金National Natural Science Foundation of China(No.61471325)
文摘The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
基金Supported by a grant from the Science and Technology Plan of Sichuan Province(No.2021YFS0225)the Science and Technology Plan of Chengdu(No.2021-YF05-01507-SN).
文摘Objective This study aimed to explore the feasibility of enhancing image quality in computed tomography(CT) pulmonary angiography (CTPA) and reducing radiation dose using the nonlinear blending (NLB)technique of dual-energy CT.Methods A total of 61 patients scheduled for CTPA were enrolled, and 30 patients underwent dual-energyscanning. Nonlinear blending images (NLB group) and three groups of linear blending images (LB group,80 kV group, and 140 kV group) were reconstructed after scanning;31 patients underwent single-energyscanning (120 kV group). The CT values and standard deviations of the pulmonary trunk, left and rightpulmonary arteries, and ipsilateral back muscle at the bifurcation level of the left and right pulmonaryarteries were measured. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the fivegroups were calculated. The subjective image quality of the five groups was assessed. The radiation dosesof the dual- and single-energy groups were recorded and calculated.Results The CNR and SNR values of blood vessels in the NLB group were significantly higher than thosein the LB, 140 kV, and 80 kV groups (CNR of pulmonary artery trunk: t = 3.50, 4.06, 7.17, all P < 0.05;SNRof pulmonary trunk: t = 3.76, 4.71, 6.92, all P < 0.05). There were no statistical differences in the CNR andSNR values between the NLB group and 120 kV group (P > 0.05). The effective radiation dose of the dualenergygroup was lower than that of the single-energy group (t = –4.52, P < 0.05). The subjective scores ofimages in the NLB group were the highest (4.28 ± 0.74).Conclusion The NLB technique of dual-energy CT can improve the image quality of CTPA and reducethe radiation dose, providing more reliable imaging data for the clinical diagnosis of pulmonary embolism.
文摘Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.
文摘目的采用微焦点断层扫描(Micro-CT)评价超声骨焊接技术应用过程中超声震荡产热作用下PDLLA材料对骨愈合性能的影响。方法选择SPF级雄性新西兰大白兔36只,随机分为超声骨焊接技术辅助PDLLA材料组(A组)、拧入技术辅助PDLLA材料组(B组)、假手术组(C组)、空白对照组(D组),各9只。于术后4、8、12周取下颌骨标本,周围骨组织进行HE染色,观察各组植入钉周围情况。对术后4、8、12周的下颌骨大体标本拍摄Micro-CT图,使用VG Studio MAX软件进行三维重建,摆正数据样本,即颌骨颊侧造模处为轴向,动态分析植入钉体积、植入钉周围200μm环状区及骨缺损处的植入材料体积数、相对骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数(Tb.N)、骨小梁间隙(Tb.Sp)等骨愈合相关指标。结果HE染色结果显示,按3个时间可动态观察到A、B、C组骨缺损处骨性骨痂替代纤维性骨痂,形成类骨质,编织骨的过程符合正常骨损伤愈合的过程。Micro-CT结果显示,A、B组术后3个时间点的材料体积比较差异均无统计学意义(P>0.05);在3个时间点,4组植入钉周围200μm环状区中BV/TV、Tb.Th、Tb.N、Tb.Sp比较差异均无统计学意义(P>0.05);在骨缺损处,A、B、C组三个时间点BV/TV、Tb.Th、Tb.N、Tb.Sp比较差异无统计学意义(P>0.05);术后4周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.N、Tb.Sp差异有统计学意义(P<0.05);与C组比较,A、B组Tb.N差异有统计学意义(P<0.01)。术后8周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.N、Tb.Sp差异有统计学意义(P<0.05);术后12周,与D组比较,A、B、C组BV/TV、Tb.Th、Tb.Sp差异有统计学意义(P<0.05)。结论超声骨焊接技术其超声震荡产热作用下PDLLA材料对骨愈合性能无不良影响。