BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside s...BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.展开更多
BACKGROUND Currently,the differentiation of jaw tumors is mainly based on the lesion’s morphology rather than the enhancement characteristics,which are important in the differentiation of neoplasms across the body.Th...BACKGROUND Currently,the differentiation of jaw tumors is mainly based on the lesion’s morphology rather than the enhancement characteristics,which are important in the differentiation of neoplasms across the body.There is a paucity of literature on the enhancement characteristics of jaw tumors.This is mainly because,even though computed tomography(CT)is used to evaluate these lesions,they are often imaged without intravenous contrast.This study hypothesised that the enhancement characteristics of the solid component of jaw tumors can aid in the differentiation of these lesions in addition to their morphology by dual-energy CT,therefore improving the ability to differentiate between various pathologies.AIM To evaluate the role of contrast enhancement and dual-energy quantitative parameters in CT in the differentiation of jaw tumors.METHODS Fifty-seven patients with jaw tumors underwent contrast-enhanced dual-energy CT.Morphological analysis of the tumor,including the enhancing solid component,was done,followed by quantitative analysis of iodine concentration(IC),water concentration(WC),HU,and normalized IC.The study population was divided into four subgroups based on histopathological analysis-central giant cell granuloma(CGCG),ameloblastoma,odontogenic keratocyst(OKC),and other jaw tumors.A one-way ANOVA test for parametric variables and the Kruskal-Wallis test for nonparametric variables were used.If significant differences were found,a series of independent t-tests or Mann-Whitney U tests were used.RESULTS Ameloblastoma was the most common pathology(n=20),followed by CGCG(n=11)and OKC.CGCG showed a higher mean concentration of all quantitative parameters than ameloblastomas(P<0.05).An IC threshold of 31.35×100μg/cm^(3) had the maximum sensitivity(81.8%)and specificity(65%).Between ameloblastomas and OKC,the former showed a higher mean concentration of all quantitative parameters(P<0.001),however when comparing unilocular ameloblastomas with OKCs,the latter showed significantly higher WC.Also,ameloblastoma had a higher IC and lower WC compared to“other jaw tumors”group.CONCLUSION Enhancement characteristics of solid components combined with dual-energy parameters offer a more precise way to differentiate between jaw tumors.展开更多
Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure p...Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.展开更多
BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign...BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.展开更多
Objective Ureteral lesions caused by impacted ureteral stones are likely to result in postoperative ureteral stricture.On this basis,the study aimed to investigate if dual-energy spectral computed tomography can predi...Objective Ureteral lesions caused by impacted ureteral stones are likely to result in postoperative ureteral stricture.On this basis,the study aimed to investigate if dual-energy spectral computed tomography can predict ureteral hardening caused by impacted stones and to explore the relationship between different types of ureteral lesions and the risk of ureteral stricture.Methods This prospective study collected data of 93 patients with impacted stones from hospital automation system during January 2018 to October 2019.They underwent an abdominal scan on a dual-energy spectral computed tomography.During surgery,the operator used ureteroscopy to identify ureteral lesions,which were classified into four categories:edema,polyps,pallor,and hardening.Seven months later,90 patients were reviewed for the degree of hydronephrosis.Results Endoscopic observations revealed 38(41%)cases of ureteral edema,20(22%)cases of polyps,13(14%)cases of pallor,and 22(24%)cases of hardening.There were significant differences in hydronephrosis,the period of impaction,the calcium concentration of the ureter,and the slope of the spectral Hounsfield unit curve between the four groups.After that,we evaluated the factors associated with ureteral hardening and found that the calcium concentration of the ureter and hydronephrosis remained independent predictors of ureteral hardening.Receiver operating characteristic curve analysis showed that 5.3 mg/cm^(3)calcium concentration of the ureter is an optimal cut-off value to predict ureteral hardening.The result of follow-up showed that 80 patients had complete remission of hydronephrosis,with a complete remission rate of 61.9%(13/21)in the hardening group and 97.1%(67/69)in the non-hardening group(p<0.001).Conclusion Calcium concentration of the ureter is an independent predictor of ureteral hardening.Patients with ureteral hardening have more severe hydronephrosis after ureteroscopic lithotripsy.When the calcium concentration of the ureter is less than 5.3 mg/cm^(3),ureteral lesions should be actively treated.展开更多
AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with ...AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with sinogram affirmed iterative reconstruction(SAFIRE?) in comparison with a standard MDCT protocol. Fiftythree consecutive patients with known or suspected hepatocellular carcinoma underwent 55 CT examinations, with two different four-phase CT protocols. The first group of 30 patients underwent a standard 120 kVp acquisition after injection of Iohexol 350 mg/m L(Accupaque 350~?) and reconstructed with filtered back projection. The second group of 25 patients underwent a dual-energy CT at 80-140 kVp with iodixanol 270. The 80 kVp component of the second group was reconstructed iteratively(SAFIRE?-Siemens). All hyperdense and hypodense hepatic lesions ≥ 5 mm were identified with both protocols. Aorta and portal vessels/liver parenchyma contrast to noise ratio(CNR) in arterial phase, hypervascular lesion/liver parenchyma CNR in arterial phase, hypodense lesion/liver parenchyma CNR in portal and late phase were calculated in both groups.RESULTS: Aorta/liver and focal lesions altogether/liver CNR were higher for the second protocol(P = 0.0078 and 0.0346). Hypervascular lesions/liver CNR was not statistically different(P = 0.86). Hypodense lesion/liver CNR in the portal phase was significantly higher for the second group(P = 0.0107). Hypodense lesion/liver CNR in the late phase was the same for both groups(P = 0.9926).CONCLUSION: MDCT imaging with 80 kVp with iterative reconstruction and iodixanol 270 yields equal or even better image quality.展开更多
Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-...Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-enhanced abdominal and pelvic scans. Methods This institutional review board-approved prospective study included 64 patients who gave written informed consent for additional abdominal and pelvic scan with DSCT in the period from November to December 2012. The patients underwent standard non-enhanced CT scans(protocol 1) [tube voltage of 120 k Vp/pitch of 0.9/filtered back-projection(FBP) reconstruction] followed by high-pitch non-enhanced CT scans(protocol 2)(100 k Vp/3.0/SAFIRE). The total scan time, mean CT number, signal-to-noise ratio(SNR), image quality, lesion detectability and radiation dose were compared between the two protocols. Results The total scan time of protocol 2 was significantly shorter than that of protocol 1(1.4±0.1 seconds vs. 7.6±0.6 seconds, P<0.001). There was no significant difference between protocol 1 and protocol 2 in mean CT number of all organs(liver, 55.4±6.3 HU vs. 56.1±6.8 HU, P=0.214; pancreas, 43.6±5.9 HU vs. 43.7±5.8 HU, P=0.785; spleen, 47.9±3.9 HU vs. 49.4±4.3 HU, P=0.128; kidney, 32.2±2.3 HU vs. 33.1±2.3 HU, P=0.367; abdominal aorta, 44.8±5.6 HU vs. 45.0±5.5 HU, P=0.499; psoas muscle, 50.7±4.1 HU vs. 50.3±4.5 HU, P=0.279). SNR on images of protocol 2 was higher than that of protocol 1(liver, 5.0±1.2 vs. 4.5±1.1, P<0.001; pancreas, 4.0±1.0 vs. 3.6±0.8, P<0.001; spleen, 4.7±1.0 vs. 4.1±0.9, P<0.001; kidney, 3.1±0.6 vs. 2.8±0.6, P<0.001; abdominal aorta, 4.1±1.0 vs. 3.8±1.0, P<0.001; psoas muscle, 4.5±1.1 vs. 4.3±1.2, P=0.012). The overall image noise of protocol 2 was lower than that of protocol1(9.8±3.1 HU vs. 11.1±3.0 HU, P<0.001). Image quality of protocol 2 was good but lower than that of protocol 1(4.1±0.7 vs. 4.6±0.5, P<0.001). Protocol 2 perceived 229 of 234 lesions(97.9%) that were detected in protocol 1 in the abdomen and pelvis. Radiation dose of protocol 2 was lower than that of protocol 1(4.4±0.4 m Sv vs. 7.3±2.4 m Sv, P<0.001) and the mean dose reduction was 41.4%. Conclusion The high-pitch DSCT with SAFIRE can shorten scan time and reduce radiation dose while preserving image quality in non-enhanced abdominal and pelvic scans.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
Inspired by total variation(TV), this paper represents a new iterative algorithm based on diagonal total variation(DTV) to address the computed tomography image reconstruction problem. To improve the quality of a reco...Inspired by total variation(TV), this paper represents a new iterative algorithm based on diagonal total variation(DTV) to address the computed tomography image reconstruction problem. To improve the quality of a reconstructed image, we used DTV to sparsely represent images when iterative convergence of the reconstructed algorithm with TV-constraint had no effect during the reconstruction process. To investigate our proposed algorithm, the numerical and experimental studies were performed, and rootmean-square error(RMSE) and structure similarity(SSIM)were used to evaluate the reconstructed image quality. The results demonstrated that the proposed method could effectively reduce noise, suppress artifacts, and reconstruct highquality image from incomplete projection data.展开更多
The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography(CT) reconstruction. A method employing the image gradient sparsity is often used to reduce t...The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography(CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts.To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated.The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterat...The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.展开更多
In this paper, a novel reconstruction technique based on level set method and algebraic reconstruction technique is proposed for multiphase flow computed tomography (CT) system. The curvature-driven noise reduction me...In this paper, a novel reconstruction technique based on level set method and algebraic reconstruction technique is proposed for multiphase flow computed tomography (CT) system. The curvature-driven noise reduction method is inserted into the conventional iteration procedure of algebraic reconstruction technique to improve the image quality and convergence speed with limited projection data. By evolving the image as a set of iso-intensity contours after each updation, the sufficient number of iterations for acceptable results is reduced by 80%-90%, while the image quality is enhanced obviously. Quantitative evaluation of image quality is given by using both relative image error and correlation coefficient. The resultant images can be utilized to detect flow regimes for monitoring industrial multiphase flow. Laboratory results demonstrate the feasibility of the proposed method. Phantoms of four typical flow regimes can be reconstructed from few-view projection data efficiently, and the corresponding image errors and correlation coefficients are acceptable for the cases tested in this paper.展开更多
Background: After the failure of medical treatment, the surgery of chronic rhinosinusitis (CRS) is planned according to endoscopic and paranasal sinus computed tomography (CT) findings. Objective: The aim of this pros...Background: After the failure of medical treatment, the surgery of chronic rhinosinusitis (CRS) is planned according to endoscopic and paranasal sinus computed tomography (CT) findings. Objective: The aim of this prospective study was to evaluate whether this study method might be eligible in studies aiming at radiation dose reduction. Sinus CT scans were chosen as a model because of the high variation of the radiological anatomy of surgically important sinonasal structures. We hypothesized that 3 mm-slice-thick reconstruction CT had poor reproducibility. Methods: 59 CRS patients underwent routine multi-detector sinus CT (CT<sub>MD</sub>). CT<sub>3mm</sub> was reconstructed from CT<sub>MD</sub> data-sets. Lund-Mackay (LM) scores and 43 other structural parameters were analyzed blinded. Agreement was studied between CT<sub>MD</sub> and CT<sub>3mm</sub> (intra-observer reproducibility), and between three observers (inter-observer reproducibility) by using Cohen’s kappa. Results: The inter-observer agreement was moderate (kappa 0.4 - 0.6, p < 0.01) in the majority of structures of CT<sub>3mm</sub> scans. The intra-observer reproducibility of CT<sub>3mm</sub> scans was very good in most structures, however, it was poor in important structures such as frontal and spheno-ethmoid recess, lamina papyracae, and location of optic nerve or anterior ethmoidal artery. The grade of surgeon’s confidence of CT<sub>3mm</sub> in comparison to CT<sub>MD</sub> was lower (kappa 0.2 - 0.4, P < 0.05). Conclusion: This methodology might have some use in studies aiming at radiation dose reduction. As was expected, 3 mm-slice-thick reconstruction CT had poor reproducibility and surgeon’s confidence. More recent methods such as cone beam computed tomography scans have nowadays more relevant dose reduction potential.展开更多
4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumul...4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry no...Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.展开更多
BACKGROUNDGout, caused by hyperuricemia and subsequent deposition of aggregatedmonosodium urate crystals (MSU) in the joints or extra-articular regions, is themost common inflammatory arthritis. There is increasing ev...BACKGROUNDGout, caused by hyperuricemia and subsequent deposition of aggregatedmonosodium urate crystals (MSU) in the joints or extra-articular regions, is themost common inflammatory arthritis. There is increasing evidence that gout is anindependent risk factor for hypertension, cardiovascular disease progression andmortality.AIMTo evaluate if dual energy computed tomography (DECT) could identify MSUwithin vessel walls of gout patients, and if MSU deposits within the vasculaturediffered between patients with gout and controls. This study may help elucidatewhy individuals with gout have increased risk for cardiovascular disease.METHODS31 gout patients and 18 controls underwent DECT scans of the chest andabdomen. A material decomposition algorithm was used to distinguish regions ofMSU (coded green), and calcifications (coded purple) from soft tissue (uncoded). Volume of green regions was calculated using a semi-automated volumeassessment program. Between-group differences were analyzed using Mann-Whitney U exact test and nonparametric rank regression.RESULTSGout patients had significantly higher volume of MSU within the aorta comparedto controls [Median (Min-Max) of 43.9 (0-1113.5) vs 2.9 (0-219.4), P = 0.01].Number of deposits was higher in gout patients compared to controls [Median(Min-Max) of 20 (0-739) vs 1.5 (0-104), P = 0.008]. However, the difference wasinsignificant after adjustment for age, gender, history of cardiovascular diseaseand diabetes. Increased age was positively associated with total urate volume (rs =0.64;95% confidence interval: 0.43-0.78).CONCLUSIONThis pilot study showed that DECT can quantify vascular urate deposits withvariation across groups, with gout patients possibly having higher deposition.This relationship disappeared when adjusted for age, and there was a positiverelationship between age and MSU deposition. While this study does not provethat green coded regions are truly MSU deposition, it corroborates recent studiesthat show the presence of vascular deposition.展开更多
Objective To evaluate the feasibility of using gadopentetate dimeglumine(Gd-DTPA)for dual-energy computed tomography pulmonary angiography(CTPA).Methods Sixty-six patients were randomly divided into three groups and u...Objective To evaluate the feasibility of using gadopentetate dimeglumine(Gd-DTPA)for dual-energy computed tomography pulmonary angiography(CTPA).Methods Sixty-six patients were randomly divided into three groups and underwent CTPA.Group A had a turbo flash scan using an iohexol injection,Group B had a turbo flash scan using Gd-DTPA,and Group C had a dual-energy scan using Gd-DTPA.The original images of Group C were linearly blended with a blending factor of 0.5 or reconstructed at 40,50,60,70,80,90,100,and 110 keV,respectively.The groups were compared in terms of pulmonary artery CT value,image quality,and radiation dose.Results The pulmonary artery CT values were significantly higher in Group C40keV than in Groups B and C,but lower than in Group A.There was no significant difference in the image noise of Groups C40keV,B,and C.Moreover,Group A had the largest beam hardening artifacts of the superior vena cava(SVC),followed by Groups B and C.Group C40keV showed better vascular branching than the other three groups,among which Group B was superior to Group A.The subjective score of the image quality of Groups A,B,and C showed no significant difference,but the score was significantly higher in Group C40keV than in Groups A and B.The radiation dose was significantly lower in Group B than in Groups A and C.Conclusion Gd-CTPA is recommended to patients who are unsuitable for receiving an iodine-based CTPA.Furthermore,a turbo flash scan could surpass a dual-energy scan without consideration for virtual monoenergetic imaging.展开更多
BACKGROUND Digital intraoral scanning,although developing rapidly,is rarely used in occlusal reconstruction.To compensate for the technical drawbacks of current occlusal reconstruction techniques,such as time consumpt...BACKGROUND Digital intraoral scanning,although developing rapidly,is rarely used in occlusal reconstruction.To compensate for the technical drawbacks of current occlusal reconstruction techniques,such as time consumption and high technical requirements,digital intraoral scanning can be used in clinics.This report aims to provide a way of selecting the most suitable maxillo-mandibular relationship(MMR)during recovery.CASE SUMMARY A 68-year-old man with severely worn posterior teeth underwent occlusal reconstruction with fixed prosthesis using digital intraoral scanning.A series of digital models in different stages of treatment were obtained,subsequently compared,and selected using digital intraoral scanning together with traditional measurements,such as cone beam computed tomography,joint imaging,and clinical examination.Using digital intraoral scanning,the MMR in different stages of treatment was accurately recorded,which provided feasibility for deciding the best occlusal reconstruction treatment,made the treatment process easier,and improved patient satisfaction.CONCLUSION This case report highlights the clarity,recordability,repeatability,and selectivity of digital intraoral scanning to replicate and transfer the MMR during occlusal reconstruction,expanding new perspectives for its design,fabrication,and postoperative evaluation.展开更多
文摘BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.
文摘BACKGROUND Currently,the differentiation of jaw tumors is mainly based on the lesion’s morphology rather than the enhancement characteristics,which are important in the differentiation of neoplasms across the body.There is a paucity of literature on the enhancement characteristics of jaw tumors.This is mainly because,even though computed tomography(CT)is used to evaluate these lesions,they are often imaged without intravenous contrast.This study hypothesised that the enhancement characteristics of the solid component of jaw tumors can aid in the differentiation of these lesions in addition to their morphology by dual-energy CT,therefore improving the ability to differentiate between various pathologies.AIM To evaluate the role of contrast enhancement and dual-energy quantitative parameters in CT in the differentiation of jaw tumors.METHODS Fifty-seven patients with jaw tumors underwent contrast-enhanced dual-energy CT.Morphological analysis of the tumor,including the enhancing solid component,was done,followed by quantitative analysis of iodine concentration(IC),water concentration(WC),HU,and normalized IC.The study population was divided into four subgroups based on histopathological analysis-central giant cell granuloma(CGCG),ameloblastoma,odontogenic keratocyst(OKC),and other jaw tumors.A one-way ANOVA test for parametric variables and the Kruskal-Wallis test for nonparametric variables were used.If significant differences were found,a series of independent t-tests or Mann-Whitney U tests were used.RESULTS Ameloblastoma was the most common pathology(n=20),followed by CGCG(n=11)and OKC.CGCG showed a higher mean concentration of all quantitative parameters than ameloblastomas(P<0.05).An IC threshold of 31.35×100μg/cm^(3) had the maximum sensitivity(81.8%)and specificity(65%).Between ameloblastomas and OKC,the former showed a higher mean concentration of all quantitative parameters(P<0.001),however when comparing unilocular ameloblastomas with OKCs,the latter showed significantly higher WC.Also,ameloblastoma had a higher IC and lower WC compared to“other jaw tumors”group.CONCLUSION Enhancement characteristics of solid components combined with dual-energy parameters offer a more precise way to differentiate between jaw tumors.
基金This work is supported by the National Key Research and Development Program of China(2020YFC2003400)Qiang Ni’s work was funded by the UK EPSRC project under grant number EP/K011693/1.
文摘Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.
文摘BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.
文摘Objective Ureteral lesions caused by impacted ureteral stones are likely to result in postoperative ureteral stricture.On this basis,the study aimed to investigate if dual-energy spectral computed tomography can predict ureteral hardening caused by impacted stones and to explore the relationship between different types of ureteral lesions and the risk of ureteral stricture.Methods This prospective study collected data of 93 patients with impacted stones from hospital automation system during January 2018 to October 2019.They underwent an abdominal scan on a dual-energy spectral computed tomography.During surgery,the operator used ureteroscopy to identify ureteral lesions,which were classified into four categories:edema,polyps,pallor,and hardening.Seven months later,90 patients were reviewed for the degree of hydronephrosis.Results Endoscopic observations revealed 38(41%)cases of ureteral edema,20(22%)cases of polyps,13(14%)cases of pallor,and 22(24%)cases of hardening.There were significant differences in hydronephrosis,the period of impaction,the calcium concentration of the ureter,and the slope of the spectral Hounsfield unit curve between the four groups.After that,we evaluated the factors associated with ureteral hardening and found that the calcium concentration of the ureter and hydronephrosis remained independent predictors of ureteral hardening.Receiver operating characteristic curve analysis showed that 5.3 mg/cm^(3)calcium concentration of the ureter is an optimal cut-off value to predict ureteral hardening.The result of follow-up showed that 80 patients had complete remission of hydronephrosis,with a complete remission rate of 61.9%(13/21)in the hardening group and 97.1%(67/69)in the non-hardening group(p<0.001).Conclusion Calcium concentration of the ureter is an independent predictor of ureteral hardening.Patients with ureteral hardening have more severe hydronephrosis after ureteroscopic lithotripsy.When the calcium concentration of the ureter is less than 5.3 mg/cm^(3),ureteral lesions should be actively treated.
文摘AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with sinogram affirmed iterative reconstruction(SAFIRE?) in comparison with a standard MDCT protocol. Fiftythree consecutive patients with known or suspected hepatocellular carcinoma underwent 55 CT examinations, with two different four-phase CT protocols. The first group of 30 patients underwent a standard 120 kVp acquisition after injection of Iohexol 350 mg/m L(Accupaque 350~?) and reconstructed with filtered back projection. The second group of 25 patients underwent a dual-energy CT at 80-140 kVp with iodixanol 270. The 80 kVp component of the second group was reconstructed iteratively(SAFIRE?-Siemens). All hyperdense and hypodense hepatic lesions ≥ 5 mm were identified with both protocols. Aorta and portal vessels/liver parenchyma contrast to noise ratio(CNR) in arterial phase, hypervascular lesion/liver parenchyma CNR in arterial phase, hypodense lesion/liver parenchyma CNR in portal and late phase were calculated in both groups.RESULTS: Aorta/liver and focal lesions altogether/liver CNR were higher for the second protocol(P = 0.0078 and 0.0346). Hypervascular lesions/liver CNR was not statistically different(P = 0.86). Hypodense lesion/liver CNR in the portal phase was significantly higher for the second group(P = 0.0107). Hypodense lesion/liver CNR in the late phase was the same for both groups(P = 0.9926).CONCLUSION: MDCT imaging with 80 kVp with iterative reconstruction and iodixanol 270 yields equal or even better image quality.
文摘Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-enhanced abdominal and pelvic scans. Methods This institutional review board-approved prospective study included 64 patients who gave written informed consent for additional abdominal and pelvic scan with DSCT in the period from November to December 2012. The patients underwent standard non-enhanced CT scans(protocol 1) [tube voltage of 120 k Vp/pitch of 0.9/filtered back-projection(FBP) reconstruction] followed by high-pitch non-enhanced CT scans(protocol 2)(100 k Vp/3.0/SAFIRE). The total scan time, mean CT number, signal-to-noise ratio(SNR), image quality, lesion detectability and radiation dose were compared between the two protocols. Results The total scan time of protocol 2 was significantly shorter than that of protocol 1(1.4±0.1 seconds vs. 7.6±0.6 seconds, P<0.001). There was no significant difference between protocol 1 and protocol 2 in mean CT number of all organs(liver, 55.4±6.3 HU vs. 56.1±6.8 HU, P=0.214; pancreas, 43.6±5.9 HU vs. 43.7±5.8 HU, P=0.785; spleen, 47.9±3.9 HU vs. 49.4±4.3 HU, P=0.128; kidney, 32.2±2.3 HU vs. 33.1±2.3 HU, P=0.367; abdominal aorta, 44.8±5.6 HU vs. 45.0±5.5 HU, P=0.499; psoas muscle, 50.7±4.1 HU vs. 50.3±4.5 HU, P=0.279). SNR on images of protocol 2 was higher than that of protocol 1(liver, 5.0±1.2 vs. 4.5±1.1, P<0.001; pancreas, 4.0±1.0 vs. 3.6±0.8, P<0.001; spleen, 4.7±1.0 vs. 4.1±0.9, P<0.001; kidney, 3.1±0.6 vs. 2.8±0.6, P<0.001; abdominal aorta, 4.1±1.0 vs. 3.8±1.0, P<0.001; psoas muscle, 4.5±1.1 vs. 4.3±1.2, P=0.012). The overall image noise of protocol 2 was lower than that of protocol1(9.8±3.1 HU vs. 11.1±3.0 HU, P<0.001). Image quality of protocol 2 was good but lower than that of protocol 1(4.1±0.7 vs. 4.6±0.5, P<0.001). Protocol 2 perceived 229 of 234 lesions(97.9%) that were detected in protocol 1 in the abdomen and pelvis. Radiation dose of protocol 2 was lower than that of protocol 1(4.4±0.4 m Sv vs. 7.3±2.4 m Sv, P<0.001) and the mean dose reduction was 41.4%. Conclusion The high-pitch DSCT with SAFIRE can shorten scan time and reduce radiation dose while preserving image quality in non-enhanced abdominal and pelvic scans.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金supported in part by the National Natural Science Foundation of China(No.61401049)the Chongqing Foundation and Frontier Research Project(Nos.cstc2016jcyjA0473,cstc2013jcyjA0763)+3 种基金the Graduate Scientific Research and Innovation Foundation of Chongqing,China(No.CYB16044)the Strategic Industry Key Generic Technology Innovation Project of Chongqing(No.cstc2015zdcy-ztzxX0002)China Scholarship Councilthe Fundamental Research Funds for the Central Universities Nos.CDJZR14125501,106112016CDJXY120003,10611CDJXZ238826
文摘Inspired by total variation(TV), this paper represents a new iterative algorithm based on diagonal total variation(DTV) to address the computed tomography image reconstruction problem. To improve the quality of a reconstructed image, we used DTV to sparsely represent images when iterative convergence of the reconstructed algorithm with TV-constraint had no effect during the reconstruction process. To investigate our proposed algorithm, the numerical and experimental studies were performed, and rootmean-square error(RMSE) and structure similarity(SSIM)were used to evaluate the reconstructed image quality. The results demonstrated that the proposed method could effectively reduce noise, suppress artifacts, and reconstruct highquality image from incomplete projection data.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372172)
文摘The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography(CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts.To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated.The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natural Science Foundation of China(Grant No.61372172)
文摘The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.
基金Supported by National Natural Science Foundation of China (No.60820106002,No.60532020)Natural Science Foundation of Tianjin(No.11JCYBJC06900)
文摘In this paper, a novel reconstruction technique based on level set method and algebraic reconstruction technique is proposed for multiphase flow computed tomography (CT) system. The curvature-driven noise reduction method is inserted into the conventional iteration procedure of algebraic reconstruction technique to improve the image quality and convergence speed with limited projection data. By evolving the image as a set of iso-intensity contours after each updation, the sufficient number of iterations for acceptable results is reduced by 80%-90%, while the image quality is enhanced obviously. Quantitative evaluation of image quality is given by using both relative image error and correlation coefficient. The resultant images can be utilized to detect flow regimes for monitoring industrial multiphase flow. Laboratory results demonstrate the feasibility of the proposed method. Phantoms of four typical flow regimes can be reconstructed from few-view projection data efficiently, and the corresponding image errors and correlation coefficients are acceptable for the cases tested in this paper.
文摘Background: After the failure of medical treatment, the surgery of chronic rhinosinusitis (CRS) is planned according to endoscopic and paranasal sinus computed tomography (CT) findings. Objective: The aim of this prospective study was to evaluate whether this study method might be eligible in studies aiming at radiation dose reduction. Sinus CT scans were chosen as a model because of the high variation of the radiological anatomy of surgically important sinonasal structures. We hypothesized that 3 mm-slice-thick reconstruction CT had poor reproducibility. Methods: 59 CRS patients underwent routine multi-detector sinus CT (CT<sub>MD</sub>). CT<sub>3mm</sub> was reconstructed from CT<sub>MD</sub> data-sets. Lund-Mackay (LM) scores and 43 other structural parameters were analyzed blinded. Agreement was studied between CT<sub>MD</sub> and CT<sub>3mm</sub> (intra-observer reproducibility), and between three observers (inter-observer reproducibility) by using Cohen’s kappa. Results: The inter-observer agreement was moderate (kappa 0.4 - 0.6, p < 0.01) in the majority of structures of CT<sub>3mm</sub> scans. The intra-observer reproducibility of CT<sub>3mm</sub> scans was very good in most structures, however, it was poor in important structures such as frontal and spheno-ethmoid recess, lamina papyracae, and location of optic nerve or anterior ethmoidal artery. The grade of surgeon’s confidence of CT<sub>3mm</sub> in comparison to CT<sub>MD</sub> was lower (kappa 0.2 - 0.4, P < 0.05). Conclusion: This methodology might have some use in studies aiming at radiation dose reduction. As was expected, 3 mm-slice-thick reconstruction CT had poor reproducibility and surgeon’s confidence. More recent methods such as cone beam computed tomography scans have nowadays more relevant dose reduction potential.
基金This work was supported in part by grants from the US National Institutes of Health,Nos.R01 EB020366 and R01 EB027898the Cancer Prevention and Research Institute of Texas,Nos.RP130109 and RP160661from the University of Texas Southwestern Medical Center(Radiation Oncology Seed Grant).
文摘4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金supported by the National Institute of Health (R37CA240806)and American Cancer Society (133697-RSG-19-110-01-CCE)support from UCI Chao Family Comprehensive Cancer Center (P30CA062203).
文摘Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.
基金The authors wish to thank Sonum Naidu,BSE for help with formatting and submission of this manuscript.
文摘BACKGROUNDGout, caused by hyperuricemia and subsequent deposition of aggregatedmonosodium urate crystals (MSU) in the joints or extra-articular regions, is themost common inflammatory arthritis. There is increasing evidence that gout is anindependent risk factor for hypertension, cardiovascular disease progression andmortality.AIMTo evaluate if dual energy computed tomography (DECT) could identify MSUwithin vessel walls of gout patients, and if MSU deposits within the vasculaturediffered between patients with gout and controls. This study may help elucidatewhy individuals with gout have increased risk for cardiovascular disease.METHODS31 gout patients and 18 controls underwent DECT scans of the chest andabdomen. A material decomposition algorithm was used to distinguish regions ofMSU (coded green), and calcifications (coded purple) from soft tissue (uncoded). Volume of green regions was calculated using a semi-automated volumeassessment program. Between-group differences were analyzed using Mann-Whitney U exact test and nonparametric rank regression.RESULTSGout patients had significantly higher volume of MSU within the aorta comparedto controls [Median (Min-Max) of 43.9 (0-1113.5) vs 2.9 (0-219.4), P = 0.01].Number of deposits was higher in gout patients compared to controls [Median(Min-Max) of 20 (0-739) vs 1.5 (0-104), P = 0.008]. However, the difference wasinsignificant after adjustment for age, gender, history of cardiovascular diseaseand diabetes. Increased age was positively associated with total urate volume (rs =0.64;95% confidence interval: 0.43-0.78).CONCLUSIONThis pilot study showed that DECT can quantify vascular urate deposits withvariation across groups, with gout patients possibly having higher deposition.This relationship disappeared when adjusted for age, and there was a positiverelationship between age and MSU deposition. While this study does not provethat green coded regions are truly MSU deposition, it corroborates recent studiesthat show the presence of vascular deposition.
基金supported by grants from the Scientific Research Project of Hunan Health Commission in 2019(No.B2019071)the Scientific Research Project of Hunan Health Commission in 2020(No.B20200059).
文摘Objective To evaluate the feasibility of using gadopentetate dimeglumine(Gd-DTPA)for dual-energy computed tomography pulmonary angiography(CTPA).Methods Sixty-six patients were randomly divided into three groups and underwent CTPA.Group A had a turbo flash scan using an iohexol injection,Group B had a turbo flash scan using Gd-DTPA,and Group C had a dual-energy scan using Gd-DTPA.The original images of Group C were linearly blended with a blending factor of 0.5 or reconstructed at 40,50,60,70,80,90,100,and 110 keV,respectively.The groups were compared in terms of pulmonary artery CT value,image quality,and radiation dose.Results The pulmonary artery CT values were significantly higher in Group C40keV than in Groups B and C,but lower than in Group A.There was no significant difference in the image noise of Groups C40keV,B,and C.Moreover,Group A had the largest beam hardening artifacts of the superior vena cava(SVC),followed by Groups B and C.Group C40keV showed better vascular branching than the other three groups,among which Group B was superior to Group A.The subjective score of the image quality of Groups A,B,and C showed no significant difference,but the score was significantly higher in Group C40keV than in Groups A and B.The radiation dose was significantly lower in Group B than in Groups A and C.Conclusion Gd-CTPA is recommended to patients who are unsuitable for receiving an iodine-based CTPA.Furthermore,a turbo flash scan could surpass a dual-energy scan without consideration for virtual monoenergetic imaging.
文摘BACKGROUND Digital intraoral scanning,although developing rapidly,is rarely used in occlusal reconstruction.To compensate for the technical drawbacks of current occlusal reconstruction techniques,such as time consumption and high technical requirements,digital intraoral scanning can be used in clinics.This report aims to provide a way of selecting the most suitable maxillo-mandibular relationship(MMR)during recovery.CASE SUMMARY A 68-year-old man with severely worn posterior teeth underwent occlusal reconstruction with fixed prosthesis using digital intraoral scanning.A series of digital models in different stages of treatment were obtained,subsequently compared,and selected using digital intraoral scanning together with traditional measurements,such as cone beam computed tomography,joint imaging,and clinical examination.Using digital intraoral scanning,the MMR in different stages of treatment was accurately recorded,which provided feasibility for deciding the best occlusal reconstruction treatment,made the treatment process easier,and improved patient satisfaction.CONCLUSION This case report highlights the clarity,recordability,repeatability,and selectivity of digital intraoral scanning to replicate and transfer the MMR during occlusal reconstruction,expanding new perspectives for its design,fabrication,and postoperative evaluation.