A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and f...A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.展开更多
The continuous increase in the incidence rate of various fatal malignant tumors in the recent years warrants an imperative search for medications or drugs with obvious anti-tumor eflects and reliable curative effects....The continuous increase in the incidence rate of various fatal malignant tumors in the recent years warrants an imperative search for medications or drugs with obvious anti-tumor eflects and reliable curative effects.Previous studies have found that Curcuma zedoaria and its active ingredients,such as turmeric oil,curcumol,and P-elemene,have obvious antitumor effects,and they do not have the adverse reactions and side effects seen in the anti-tumor drugs of Western medicine.Based on the review and inductive analysis of related literature,we summarize in the present article the results of some researchers who investigated the anti-tumor effects of Curcuma zedoaria and its active ingredients through the immune regulation mechanism.展开更多
With the detoxicated seedling of a potato cultivation breed named “Mire” as the material, the effect of auxins CCC, 6-BA, and active carbon to microtubers of potato (Solanum tubersum L.) was investigated under the i...With the detoxicated seedling of a potato cultivation breed named “Mire” as the material, the effect of auxins CCC, 6-BA, and active carbon to microtubers of potato (Solanum tubersum L.) was investigated under the in-vitro circumstances. The result indicated the exogenous auxins improved the production and quality of microtubers of potatoes. The effect of induction can be described as CCC > CCC + 6-BA > 6-BA > CK, the number of microtubers in per flask is 8.17 > 7.67 > 7.29 > 5.46, and the number of large potatoes in per flask is 6.33 > 5.17 > 3.17 > 1. In addition, by adding 0.5‰ of active charcoal, the growth period was shortened from 25.0 days to 9.33 days on average, and the amount of larger potatoes increased 8.54%. These results benefited the growth of microtubers of potato.展开更多
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by m...The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs.展开更多
Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side ...Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side of the watersplitting device significantly hinders its practical applications.Generally,the efficiency of oxygen evolution processes depends greatly on the availability of cost‐effective catalysts with high activity and selectivity.In recent years,extensive theoretical and experimental studies have demonstrated that cobalt(Co)‐based nanomaterials,especially low‐dimensional Co‐based nanomaterials with a huge specific surface area and abundant unsaturated active sites,have emerged as versatile electrocatalysts for oxygen evolution reactions,and thus,great progress has been made in the rational design and synthesis of Co‐based nanomaterials for electrocatalytic oxygen evolution reactions.Considering the remarkable progress in this area,in this timely review,we highlight the most recent developments in Co‐based nanomaterials relating to their dimensional control,defect regulation(conductivity),electronic structure regulation,and so forth.Furthermore,a brief conclusion about recent progress achieved in oxygen evolution on Co‐based nanomaterials,as well as an outlook on future research challenges,is given.展开更多
The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by me...The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by means of HRMS, IR, 1H-NMR, (13)C-NMR and single-crystal X-ray diffraction. The compound crystallizes in trigonal, space group R-3, with a = 27.892(9), b = 27.892(9), c = 6.720(2) A, γ = 120°, Z = 18, V = 4527(3) A3, Dc = 1.230 g/cm3, Mr = 186.24, λ(Mo Kα) = 0.71073?, μ = 0.09 mm(-1), F(000) = 1836, the final R = 0.051 and wR = 0.161. The title compound molecule contained a 6-oxabicyclo[3.2.1]octane skeleton and two hydroxyl groups, which were connected through intermolecular O–H…O hydrogen bonds to generate a two-dimensional network. Especially, the preliminary bioassay showed that the title compound can promote the root growth and shoot elongation of rape(Brassica campestris) at low concentration(0.62570 mmol·L^-1) and inhibit them at high concentration(〉 70 mmol·L^-1).展开更多
The cleavage reactions of Ser-His and its N-terminal phosphorylated form - N-(O,O-diisopropyl) phosphoryl seryl-histidine (DIPP-Ser-His) were studied on DNA. It was found that the phosphorylation of Ser-His caused the...The cleavage reactions of Ser-His and its N-terminal phosphorylated form - N-(O,O-diisopropyl) phosphoryl seryl-histidine (DIPP-Ser-His) were studied on DNA. It was found that the phosphorylation of Ser-His caused the lost of the cleavage activity on DNA. The result might give some clue on the regulation of the activity of protein by phosphorylation.展开更多
This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed control...This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed controller is designed to include an active damping term that regulates the motor speed in accordance with the first-order low-pass filter dynamics through the pole-zero cancellation.Meanwhile,the angular acceleration and its reference are obtained from simple first-order estimators using only the speed information.The effectiveness is experimentally verified using hardware comprising the QUBEServo2,myRIO-1900,and LabVIEW.展开更多
Human salivary histatin 1(Hst1)exhibits a series of cell-activating properties,such as promoting cell spreading,migration,and metabolic activity.We recently have shown that fluorescently labeled Hst1(F-Hst1)targets an...Human salivary histatin 1(Hst1)exhibits a series of cell-activating properties,such as promoting cell spreading,migration,and metabolic activity.We recently have shown that fluorescently labeled Hst1(F-Hst1)targets and activates mitochondria,presenting an important molecular mechanism.However,its regulating signaling pathways remain to be elucidated.We investigated the influence of specific inhibitors of G protein-coupled receptors(GPCR),endocytosis pathways,extracellular signal-regulated kinases1/2(ERK1/2)signaling,p38 signaling,mitochondrial respiration and Na+/K+-ATPase activity on the uptake,mitochondria-targeting and-activating properties of F-Hst1.We performed a si RNA knockdown(KD)to assess the effect of Sigma-2 receptor(S2R)/Transmembrane Protein 97(TMEM97)—a recently identified target protein of Hst1.We also adopted live cell imaging to monitor the whole intracellular trafficking process of F-Hst1.Our results showed that the inhibition of cellular respiration hindered the internalization of F-Hst1.The inhibitors of GPCR,ERK1/2,phagocytosis,and clathrin-mediated endocytosis(CME)as well as siRNA KD of S2R/TMEM97 significantly reduced the uptake,which was accompanied by the nullification of the promoting effect of F-Hst1 on cell metabolic activity.Only the inhibitor of CME and KD of S2R/TMEM97 significantly compromised the mitochondria-targeting of Hst1.We further showed the intracellular trafficking and targeting process of F-Hst1,in which early endosome plays an important role.Overall,phagocytosis,CME,GPCR,ERK signaling,and S2R/TMEM97 are involved in the internalization of Hst1,while only CME and S2R/TMEM97 are critical for its subcellular targeting.The inhibition of either internalization or mitochondria-targeting of Hst1 could significantly compromise its mitochondria-activating property.展开更多
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this ...IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.展开更多
The high-end equipment represented by high-end machine tools and aero-engines is the core component of the national intelligent manufacturing plan,and the mass unbalance is the main reason for its excessive vibration,...The high-end equipment represented by high-end machine tools and aero-engines is the core component of the national intelligent manufacturing plan,and the mass unbalance is the main reason for its excessive vibration,that seriously impacts the operation efficiency and running life of the equipment.In order to change the traditional way that the fault of equipment can only be repaired by human,the self-recovery mechanism of human and animal are given to the equipment in this paper,which forms the self-recovery regulation(SR)system for unbalance vibration of high-end equipment.The system can online generate the self-recovery force to restrain the unbalance vibration of the equipment in operation,which is an important direction for the development of the equipment to the advanced intelligent stage.Based on the basic principles of SR technique,the typical engineering application cases of this technique in the field of aeroengine and high-end machine tools are introduced,and four related studies promoting the development of this technique are summarized and analyzed in turn.It includes feature extraction,imbalance location,regulation method and balancing actuator.Self-recovery Regulation(SR)Technique is an important way to realize intelligent manufacturing and intelligent maintenance.Relevant research can lay a technical foundation for the development of high-end equipment with self-health function.展开更多
AIM: To investigate the effect of IL-4 on the altered expression of complement activation regulators in pancreas and pancreatic necrosis during experimental severe acute pancreatitis (SAP). METHODS: SAP model of r...AIM: To investigate the effect of IL-4 on the altered expression of complement activation regulators in pancreas and pancreatic necrosis during experimental severe acute pancreatitis (SAP). METHODS: SAP model of rats was established by retrograde injection of 5% sodium taurocholate (1 mL/kg) into the pancreatic duct. We immunohistochemically assayed the expression of three complement activation regulators: decay accelerating factor (DAF; CD55), 20 ku homologous restriction factor (HRF20; CD59) and membrane cofactor protein (MCP; CEH6), in the pancreatic acinar cells of rats at 0, 3, 6, 12, and 24 h after the induction of SAP model. Meanwhile the levels of amylase and lipase were determined, and morphological examination was performed. Then, 61 rats were randomly divided into three groups. Group A (n = 21) received no treatment after the SAP model was established; group B (n = 20) was given IL-4 (8 IJg/animal) intraperitoneally 0.5 h before the SAP model was established; group C (n = 20) was given IL-4 (8 μg/animal) intraperitoneaUy 0.5 h after the SAP model was established. Plasma amylase and lipase, extent of pancreatic necrosis and expression of complement activation regulators were investigated 6 h after the induction of SAP model. RESULTS: Three complement activation regulators were all expressed in pancreatic acinar cells. MCP was not found on the basolateral surface as reported. Contrary to the gradually increasing plasma level of amylase and lipase, expression of complement activation regulators decreased after SAP model was set up. At the same time, the severity of pancreatic necrosis was enhanced. A strong negative correlation was found between the expression of MCP, DAF, CD59 in pancreatic acinar cells and the severity of pancreatic necrosis (r = -0.748, -0.827, -0.723; P〈0.01). In the second series of experiments, no matter when the treatment of IL-4 was given (before or after the induction of SAP model), the serum level of amylase or lipase was decreased and the extent of pancreatic necrosis was ameliorated significantly. Compared to SAP control group, the expression of DAF and CD59 in pancreas was reinforced when IL-4 was given before the induction of SAP model (P〈0.01, P〈0.05), but the expression of MCP was not influenced (P〉0.05). The expression of DAF was enhanced, when IL-4 was given after the induction of SAP model (P〈0.05), but the expression of CD59 and MCP did not change (P〉0.05). CONCLUSION: Complement activation regulators may participate in the pathogenesis of pancreatic inflammation. Downregulation of complement activation regulators expression may be one of the causes of pancreatic necrosis. IL-4 treatment may control SAP aggravation by enhancing expression of DAF and CD59 in pancreas and decreasing pancreatic necrosis. Moreover, DAF and CD59 may play an important role in the regulation of complement activation regulators during SAP.展开更多
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ...Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.展开更多
BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it redu...BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,and regulated on activation,normal T-cell expressed and secreted(RANTES)levels in serum and ileal tissue in animal studies.The histopathological changes of the ileal mucosa in different groups were observed under a microscope.Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide(LPS)-induced decrease in permeability.Immunofluorescence and Western blot assays were used to detect the levels of RANTES,inhibitor of nuclear factor kappa-B kinaseβ(IKKβ),phosphorylated IKKβ(p-IKKβ),inhibitor of nuclear factor kappa-B kinaseα(IκBα),p65,and p-p65 proteins in different groups in vitro.RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol,magnolol inhibited the expression of proinflammatory cytokines,IL-1β,IL-6,and TNF-αin a dose-dependent manner.In addition,magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats.Moreover,in vitro studies suggested that magnolol inhibited the increase of p65 nucleation,thereby markedly downregulating the production of the phosphorylated form of IKKβin LPS-treated Caco2 cells.Specifically,magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B(NF-κB)from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways,thereby suppressing IL-1β,IL-6,and TNF-αexpression to alleviate the mucosal barrier dysfunction in sepsis.展开更多
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCP...Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.展开更多
Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-r...Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-resistant refractory Mo to enhance the structure stability and modify the electronic structure of Pt in the prepared PtNi catalyst, improving the catalytic activity for oxygen reduction reaction(ORR). In addition, near-surface Pt content in the nanoparticle is also optimized to balance the ORR activity and stability. The electrochemical results show that the alloy formed by Mo and Pt Ni is obviously more stable than the PtNi alloy alone, because the acid-resistant Mo and its oxides effectively prevent the dissolution of Pt. Especially, the Pt3 Ni3 MoN/C exhibits the optimal ORR catalytic performance in O2-saturated 0.1 mol L^(-1) HClO4 aqueous solutions, with mass activity(MA) of 900 m A mg^(-1) Pt at 0.90 V vs. RHE, which is 3.75 times enhancement compared with the commercial Pt/C(240 mA mg^(-1) Pt). After 30 k accelerated durability tests, its MA(690 m A mg^(-1) Pt) is still 2.88 times higher than the pristine Pt/C. This study thus provides a valuable method to design stable ORR catalysts with high efficiency and has great significance for the commercialization of PEMFCs.展开更多
Purpose:The purpose of this study was to examine the relationships between children's situational motivation and physical activity(PA)levels in a Dance Dance Revolution(DDR)program,and perceived PA enjoyment.Metho...Purpose:The purpose of this study was to examine the relationships between children's situational motivation and physical activity(PA)levels in a Dance Dance Revolution(DDR)program,and perceived PA enjoyment.Methods:A sample of 215 elementary children participated in a weekly 30-min DDR program.Children's situational motivation toward DDR(intrinsic motivation,identified regulation,external regulation,and amotivation)was measured,followed by the measurement of their accel-erometer-determined moderate to vigorous PA(MVPA)in DDR.Children then reported their PA enjoyment.Results:Only intrinsic motivation was positively related with children's MVPA in DDR and PA enjoyment.However,other motivational beliefs were not significantly related to MVPA and PA enjoyment.Regression analyses further suggested intrinsic motivation was the significant predictor for MVPA and PA enjoyment.Conclusion:Children who experienced fun and learned new things when playing DDR reached high PA levels in DDR,as well as developed generalized feeling states of enjoyment.展开更多
基金Project(2009AA045004)supported by the Hi-tech Research and Development Program of China
文摘A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.
基金Guangxi Natural Science Foundation Project(No.2018GXNSFAA294115)Guangxi Natural Science Foundation Project(No.2018GXNSFAA050064)Guangxi University of Traditional Chinese Medicine Guangxi First-Class Discipline Construction Open Project(No.2019XK038)。
文摘The continuous increase in the incidence rate of various fatal malignant tumors in the recent years warrants an imperative search for medications or drugs with obvious anti-tumor eflects and reliable curative effects.Previous studies have found that Curcuma zedoaria and its active ingredients,such as turmeric oil,curcumol,and P-elemene,have obvious antitumor effects,and they do not have the adverse reactions and side effects seen in the anti-tumor drugs of Western medicine.Based on the review and inductive analysis of related literature,we summarize in the present article the results of some researchers who investigated the anti-tumor effects of Curcuma zedoaria and its active ingredients through the immune regulation mechanism.
文摘With the detoxicated seedling of a potato cultivation breed named “Mire” as the material, the effect of auxins CCC, 6-BA, and active carbon to microtubers of potato (Solanum tubersum L.) was investigated under the in-vitro circumstances. The result indicated the exogenous auxins improved the production and quality of microtubers of potatoes. The effect of induction can be described as CCC > CCC + 6-BA > 6-BA > CK, the number of microtubers in per flask is 8.17 > 7.67 > 7.29 > 5.46, and the number of large potatoes in per flask is 6.33 > 5.17 > 3.17 > 1. In addition, by adding 0.5‰ of active charcoal, the growth period was shortened from 25.0 days to 9.33 days on average, and the amount of larger potatoes increased 8.54%. These results benefited the growth of microtubers of potato.
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
基金This work was fnancially supported by National Natural Science Foundation of China(52074333,51874337)Taishan Scholar Foundation of Shandong Province(tspd20161004)Fundamental Research Funds for the Central Universities(19CX07001A).
文摘The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs.
基金National Natural Science Foundation of China,Grant/Award Number:22172063Young Taishan Scholars Program,Grant/Award Number:tsqn201812080+1 种基金China Scholarship Council(CSC),Grant/Award Number:202008130132Independent Cultivation Program of Innovation Team of Ji'nan City,Grant/Award Number:2021GXRC052。
文摘Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side of the watersplitting device significantly hinders its practical applications.Generally,the efficiency of oxygen evolution processes depends greatly on the availability of cost‐effective catalysts with high activity and selectivity.In recent years,extensive theoretical and experimental studies have demonstrated that cobalt(Co)‐based nanomaterials,especially low‐dimensional Co‐based nanomaterials with a huge specific surface area and abundant unsaturated active sites,have emerged as versatile electrocatalysts for oxygen evolution reactions,and thus,great progress has been made in the rational design and synthesis of Co‐based nanomaterials for electrocatalytic oxygen evolution reactions.Considering the remarkable progress in this area,in this timely review,we highlight the most recent developments in Co‐based nanomaterials relating to their dimensional control,defect regulation(conductivity),electronic structure regulation,and so forth.Furthermore,a brief conclusion about recent progress achieved in oxygen evolution on Co‐based nanomaterials,as well as an outlook on future research challenges,is given.
基金Supported by the National Natural Science Foundation of China(No.31460174)the Science and Research Start-Up Project for the Recruit Talent of Guangxi University for Nationalities(No.2014MDQD014)Innovation Project of Guangxi Graduate Education(gxun-chxzs2016113)
文摘The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by means of HRMS, IR, 1H-NMR, (13)C-NMR and single-crystal X-ray diffraction. The compound crystallizes in trigonal, space group R-3, with a = 27.892(9), b = 27.892(9), c = 6.720(2) A, γ = 120°, Z = 18, V = 4527(3) A3, Dc = 1.230 g/cm3, Mr = 186.24, λ(Mo Kα) = 0.71073?, μ = 0.09 mm(-1), F(000) = 1836, the final R = 0.051 and wR = 0.161. The title compound molecule contained a 6-oxabicyclo[3.2.1]octane skeleton and two hydroxyl groups, which were connected through intermolecular O–H…O hydrogen bonds to generate a two-dimensional network. Especially, the preliminary bioassay showed that the title compound can promote the root growth and shoot elongation of rape(Brassica campestris) at low concentration(0.62570 mmol·L^-1) and inhibit them at high concentration(〉 70 mmol·L^-1).
文摘The cleavage reactions of Ser-His and its N-terminal phosphorylated form - N-(O,O-diisopropyl) phosphoryl seryl-histidine (DIPP-Ser-His) were studied on DNA. It was found that the phosphorylation of Ser-His caused the lost of the cleavage activity on DNA. The result might give some clue on the regulation of the activity of protein by phosphorylation.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020M3H4A3106326)supported in part by the NRF grant funded by the Korea government(Ministry of Science and ICT)(NRF-2020R1A2C1005449)。
文摘This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed controller is designed to include an active damping term that regulates the motor speed in accordance with the first-order low-pass filter dynamics through the pole-zero cancellation.Meanwhile,the angular acceleration and its reference are obtained from simple first-order estimators using only the speed information.The effectiveness is experimentally verified using hardware comprising the QUBEServo2,myRIO-1900,and LabVIEW.
基金funded by Eurostars project,grant number E!12764。
文摘Human salivary histatin 1(Hst1)exhibits a series of cell-activating properties,such as promoting cell spreading,migration,and metabolic activity.We recently have shown that fluorescently labeled Hst1(F-Hst1)targets and activates mitochondria,presenting an important molecular mechanism.However,its regulating signaling pathways remain to be elucidated.We investigated the influence of specific inhibitors of G protein-coupled receptors(GPCR),endocytosis pathways,extracellular signal-regulated kinases1/2(ERK1/2)signaling,p38 signaling,mitochondrial respiration and Na+/K+-ATPase activity on the uptake,mitochondria-targeting and-activating properties of F-Hst1.We performed a si RNA knockdown(KD)to assess the effect of Sigma-2 receptor(S2R)/Transmembrane Protein 97(TMEM97)—a recently identified target protein of Hst1.We also adopted live cell imaging to monitor the whole intracellular trafficking process of F-Hst1.Our results showed that the inhibition of cellular respiration hindered the internalization of F-Hst1.The inhibitors of GPCR,ERK1/2,phagocytosis,and clathrin-mediated endocytosis(CME)as well as siRNA KD of S2R/TMEM97 significantly reduced the uptake,which was accompanied by the nullification of the promoting effect of F-Hst1 on cell metabolic activity.Only the inhibitor of CME and KD of S2R/TMEM97 significantly compromised the mitochondria-targeting of Hst1.We further showed the intracellular trafficking and targeting process of F-Hst1,in which early endosome plays an important role.Overall,phagocytosis,CME,GPCR,ERK signaling,and S2R/TMEM97 are involved in the internalization of Hst1,while only CME and S2R/TMEM97 are critical for its subcellular targeting.The inhibition of either internalization or mitochondria-targeting of Hst1 could significantly compromise its mitochondria-activating property.
文摘IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.
基金Supported by National Natural Science Foundation of China(Grant No.51875031)Youth Backbone Personal Project of Beijing(Grant No.2017000020124 G018).
文摘The high-end equipment represented by high-end machine tools and aero-engines is the core component of the national intelligent manufacturing plan,and the mass unbalance is the main reason for its excessive vibration,that seriously impacts the operation efficiency and running life of the equipment.In order to change the traditional way that the fault of equipment can only be repaired by human,the self-recovery mechanism of human and animal are given to the equipment in this paper,which forms the self-recovery regulation(SR)system for unbalance vibration of high-end equipment.The system can online generate the self-recovery force to restrain the unbalance vibration of the equipment in operation,which is an important direction for the development of the equipment to the advanced intelligent stage.Based on the basic principles of SR technique,the typical engineering application cases of this technique in the field of aeroengine and high-end machine tools are introduced,and four related studies promoting the development of this technique are summarized and analyzed in turn.It includes feature extraction,imbalance location,regulation method and balancing actuator.Self-recovery Regulation(SR)Technique is an important way to realize intelligent manufacturing and intelligent maintenance.Relevant research can lay a technical foundation for the development of high-end equipment with self-health function.
基金Supported by the Research Program of Science and Technology Technology Commission Foundation of Liaoning Province, No. 2001225001-17
文摘AIM: To investigate the effect of IL-4 on the altered expression of complement activation regulators in pancreas and pancreatic necrosis during experimental severe acute pancreatitis (SAP). METHODS: SAP model of rats was established by retrograde injection of 5% sodium taurocholate (1 mL/kg) into the pancreatic duct. We immunohistochemically assayed the expression of three complement activation regulators: decay accelerating factor (DAF; CD55), 20 ku homologous restriction factor (HRF20; CD59) and membrane cofactor protein (MCP; CEH6), in the pancreatic acinar cells of rats at 0, 3, 6, 12, and 24 h after the induction of SAP model. Meanwhile the levels of amylase and lipase were determined, and morphological examination was performed. Then, 61 rats were randomly divided into three groups. Group A (n = 21) received no treatment after the SAP model was established; group B (n = 20) was given IL-4 (8 IJg/animal) intraperitoneally 0.5 h before the SAP model was established; group C (n = 20) was given IL-4 (8 μg/animal) intraperitoneaUy 0.5 h after the SAP model was established. Plasma amylase and lipase, extent of pancreatic necrosis and expression of complement activation regulators were investigated 6 h after the induction of SAP model. RESULTS: Three complement activation regulators were all expressed in pancreatic acinar cells. MCP was not found on the basolateral surface as reported. Contrary to the gradually increasing plasma level of amylase and lipase, expression of complement activation regulators decreased after SAP model was set up. At the same time, the severity of pancreatic necrosis was enhanced. A strong negative correlation was found between the expression of MCP, DAF, CD59 in pancreatic acinar cells and the severity of pancreatic necrosis (r = -0.748, -0.827, -0.723; P〈0.01). In the second series of experiments, no matter when the treatment of IL-4 was given (before or after the induction of SAP model), the serum level of amylase or lipase was decreased and the extent of pancreatic necrosis was ameliorated significantly. Compared to SAP control group, the expression of DAF and CD59 in pancreas was reinforced when IL-4 was given before the induction of SAP model (P〈0.01, P〈0.05), but the expression of MCP was not influenced (P〉0.05). The expression of DAF was enhanced, when IL-4 was given after the induction of SAP model (P〈0.05), but the expression of CD59 and MCP did not change (P〉0.05). CONCLUSION: Complement activation regulators may participate in the pathogenesis of pancreatic inflammation. Downregulation of complement activation regulators expression may be one of the causes of pancreatic necrosis. IL-4 treatment may control SAP aggravation by enhancing expression of DAF and CD59 in pancreas and decreasing pancreatic necrosis. Moreover, DAF and CD59 may play an important role in the regulation of complement activation regulators during SAP.
文摘Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.
基金Basic Public Welfare Research Foundation of Zhejiang Province,China,No.GD21H290001and Traditional Chinese Medicine Science and Technology Project Foundation of Zhejiang Province,China,No.2020ZB072.
文摘BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,and regulated on activation,normal T-cell expressed and secreted(RANTES)levels in serum and ileal tissue in animal studies.The histopathological changes of the ileal mucosa in different groups were observed under a microscope.Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide(LPS)-induced decrease in permeability.Immunofluorescence and Western blot assays were used to detect the levels of RANTES,inhibitor of nuclear factor kappa-B kinaseβ(IKKβ),phosphorylated IKKβ(p-IKKβ),inhibitor of nuclear factor kappa-B kinaseα(IκBα),p65,and p-p65 proteins in different groups in vitro.RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol,magnolol inhibited the expression of proinflammatory cytokines,IL-1β,IL-6,and TNF-αin a dose-dependent manner.In addition,magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats.Moreover,in vitro studies suggested that magnolol inhibited the increase of p65 nucleation,thereby markedly downregulating the production of the phosphorylated form of IKKβin LPS-treated Caco2 cells.Specifically,magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B(NF-κB)from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways,thereby suppressing IL-1β,IL-6,and TNF-αexpression to alleviate the mucosal barrier dysfunction in sepsis.
基金supported by NIH R21AR57156NIH R37 CA49152+4 种基金the Rhode Island Hospital Orthopaedic Foundationgrant from the Pediatric Orthopaedic Society of North AmericaArthritis National Research Foundationrecipient of Ryan Fellowshippilot award recipient from NIGMS1P20 GM119943
文摘Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
基金supported by the National Natural Science Foundation of China (21872040)the Natural Science Foundation of Guangxi (2016GXNSFCB380002)+1 种基金the Hundred Talents Program of Guangxi Universitiesthe Excellence Scholars and Innovation Team of Guangxi Universities。
文摘Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-resistant refractory Mo to enhance the structure stability and modify the electronic structure of Pt in the prepared PtNi catalyst, improving the catalytic activity for oxygen reduction reaction(ORR). In addition, near-surface Pt content in the nanoparticle is also optimized to balance the ORR activity and stability. The electrochemical results show that the alloy formed by Mo and Pt Ni is obviously more stable than the PtNi alloy alone, because the acid-resistant Mo and its oxides effectively prevent the dissolution of Pt. Especially, the Pt3 Ni3 MoN/C exhibits the optimal ORR catalytic performance in O2-saturated 0.1 mol L^(-1) HClO4 aqueous solutions, with mass activity(MA) of 900 m A mg^(-1) Pt at 0.90 V vs. RHE, which is 3.75 times enhancement compared with the commercial Pt/C(240 mA mg^(-1) Pt). After 30 k accelerated durability tests, its MA(690 m A mg^(-1) Pt) is still 2.88 times higher than the pristine Pt/C. This study thus provides a valuable method to design stable ORR catalysts with high efficiency and has great significance for the commercialization of PEMFCs.
文摘Purpose:The purpose of this study was to examine the relationships between children's situational motivation and physical activity(PA)levels in a Dance Dance Revolution(DDR)program,and perceived PA enjoyment.Methods:A sample of 215 elementary children participated in a weekly 30-min DDR program.Children's situational motivation toward DDR(intrinsic motivation,identified regulation,external regulation,and amotivation)was measured,followed by the measurement of their accel-erometer-determined moderate to vigorous PA(MVPA)in DDR.Children then reported their PA enjoyment.Results:Only intrinsic motivation was positively related with children's MVPA in DDR and PA enjoyment.However,other motivational beliefs were not significantly related to MVPA and PA enjoyment.Regression analyses further suggested intrinsic motivation was the significant predictor for MVPA and PA enjoyment.Conclusion:Children who experienced fun and learned new things when playing DDR reached high PA levels in DDR,as well as developed generalized feeling states of enjoyment.