Following publication of the original article[1],the authors reported an error in the last author’s name,it was mistakenly written as“Jun Den”.The correct author’s name“Jun Deng”has been updated in this Correction.
Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from...Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from 2020 to 2021 for 6 patients who underwent correction using a stripshaped cymba conchae orthosis. The indications, corrective effects, and complications associated with use of the orthosis were analyzed. Results: There were four indications for treatment: cryptotia with helix adhesion;cryptotia with grade I microtia;cryptotia with excessive helix thickness;and auricular deformity beyond the treatment time window(≥6 months). Excellent corrective effects were observed in all 6 patients. Complications occurred in one patient, who recovered after symptomatic treatment. Conclusion: The use of a strip-shaped cymba conchae orthosis alone or combined with a U-shaped helix orthosis presents a feasible approach for correcting complex auricular deformities or deformities beyond the treatment time window in pediatric patients.展开更多
In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical...In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.展开更多
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u...A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).展开更多
Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Mater...Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany.展开更多
In the version of this Article originally published online,there was an error in the schematics of Figures 2b and 2c.These errors have now been corrected in the original article.
Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)...Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)=σ(E)N_(t)QC_(kbeam)^(e^(-λt_(i)))∫_(0)^(t_(i))e^(λt)dt,(2)The original article has been corrected.展开更多
Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 1...Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.展开更多
In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correc...In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.展开更多
This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same ...This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same sample series but with the focus of explaining the interplay between the catalytic behavior and properties of the cuprous thin films.A superior catalytic performance was demonstrated when water was added in the deposition process[1](see Ref.[47]in our publication corrected here).展开更多
Correction to:Nuclear Science and Techniques(2024)35:145 https://doi.org/10.1007/s41365-024-01517-y In this article the author’s name Wan-Bing He was incorrectly written as Wan-Bin He.The original article has been co...Correction to:Nuclear Science and Techniques(2024)35:145 https://doi.org/10.1007/s41365-024-01517-y In this article the author’s name Wan-Bing He was incorrectly written as Wan-Bin He.The original article has been corrected.展开更多
In the article‘MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1’(Oncology Research,2024,Vol.32,No.3,pp.463−476.doi:10.32604/or.20...In the article‘MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1’(Oncology Research,2024,Vol.32,No.3,pp.463−476.doi:10.32604/or.2023.044085),there was an error in the compilation of Fig.8D.We have revised Fig.8D to correct this error.A corrected version of Fig.8 is provided.This correction does not change any results or conclusions of the article.We apologize for any inconvenience caused.展开更多
Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with ...Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.展开更多
We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and ...We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.展开更多
We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems.These preconditioners are designed to treat the ca...We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems.These preconditioners are designed to treat the case of geometrically localized stiffness,where the convergence rates of iterative methods are degraded in a localized subregion of the mesh.Slower convergence may be caused by a number of factors,including the mesh size,anisotropy,highly variable coefficients,and more challenging physics.The approach taken in this work is to correct well-known preconditioners such as the block Jacobi and the block incomplete LU(ILU)with an adaptive inner subregion iteration.The goal of these preconditioners is to reduce the number of costly global iterations by accelerating the convergence in the stiff region by iterating on the less expensive reduced problem.The tolerance for the inner iteration is adaptively chosen to minimize subregion-local work while guaranteeing global convergence rates.We present analysis showing that the convergence of these preconditioners,even when combined with an adaptively selected tolerance,is independent of discretization parameters(e.g.,the mesh size and diffusion coefficient)in the subregion.We demonstrate significant performance improvements over black-box preconditioners when applied to several model convection-diffusion problems.Finally,we present performance results of several variations of iterative subregion correction preconditioners applied to the Reynolds number 2.25×10^(6)fluid flow over the NACA 0012 airfoil,as well as massively separated flow at 30°angle of attack.展开更多
Correction to“Effect of CXCR3/HO-1 genes modified bone marrow mesenchymal stem cells on small bowel transplant rejection.World J Gastroenterol 2017 June 14;23(22):4016-4038”.In this article,there is a picture that n...Correction to“Effect of CXCR3/HO-1 genes modified bone marrow mesenchymal stem cells on small bowel transplant rejection.World J Gastroenterol 2017 June 14;23(22):4016-4038”.In this article,there is a picture that needs to be corrected.展开更多
At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this met...At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.展开更多
This paper aims to develop an automatic miscalibration detection and correction framework to maintain accurate calibration of LiDAR and camera for autonomous vehicle after the sensor drift.First,a monitoring algorithm...This paper aims to develop an automatic miscalibration detection and correction framework to maintain accurate calibration of LiDAR and camera for autonomous vehicle after the sensor drift.First,a monitoring algorithm that can continuously detect the miscalibration in each frame is designed,leveraging the rotational motion each individual sensor observes.Then,as sensor drift occurs,the projection constraints between visual feature points and LiDAR 3-D points are used to compute the scaled camera motion,which is further utilized to align the drifted LiDAR scan with the camera image.Finally,the proposed method is sufficiently compared with two representative approaches in the online experiments with varying levels of random drift,then the method is further extended to the offline calibration experiment and is demonstrated by a comparison with two existing benchmark methods.展开更多
Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more adva...Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more advantages in the geometric modeling of stochastic media.The explicit modeling method has high computational accuracy and high computational cost.The chord length sampling(CLS)method can improve computational efficiency by sampling the chord length during neutron transport using the matrix chord length?s probability density function.This study shows that the excluded-volume effect in realistic stochastic media can introduce certain deviations into the CLS.A chord length correction approach is proposed to obtain the chord length correction factor by developing the Particle code based on equivalent transmission probability.Through numerical analysis against reference solutions from explicit modeling in the RMC code,it was demonstrated that CLS with the proposed correction method provides good accuracy for addressing the excludedvolume effect in realistic infinite stochastic media.展开更多
The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complicat...The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complications,necessitating a reevaluation of the speed and intensity of glycemic correction.Theories suggest swift blood sugar reductions may cause inflammation,oxidative stress,and neurovascular changes,resulting in complications.Healthcare providers should cautiously approach aggressive glycemic control,especially in long-standing,poorly controlled diabetes.Preventing and managing these complications requires a personalized,comprehensive approach with education,monitoring,and interdisciplinary care.Diabetes management must balance short and longterm goals,prioritizing overall well-being.This editorial underscores the need for a personalized,nuanced approach,focusing on equilibrium between glycemic control and avoiding overcorrection.展开更多
文摘Following publication of the original article[1],the authors reported an error in the last author’s name,it was mistakenly written as“Jun Den”.The correct author’s name“Jun Deng”has been updated in this Correction.
文摘Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from 2020 to 2021 for 6 patients who underwent correction using a stripshaped cymba conchae orthosis. The indications, corrective effects, and complications associated with use of the orthosis were analyzed. Results: There were four indications for treatment: cryptotia with helix adhesion;cryptotia with grade I microtia;cryptotia with excessive helix thickness;and auricular deformity beyond the treatment time window(≥6 months). Excellent corrective effects were observed in all 6 patients. Complications occurred in one patient, who recovered after symptomatic treatment. Conclusion: The use of a strip-shaped cymba conchae orthosis alone or combined with a U-shaped helix orthosis presents a feasible approach for correcting complex auricular deformities or deformities beyond the treatment time window in pediatric patients.
文摘In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51974082 and 52274377)the Fundamental Research Funds for the Central Universities(Grant No.N2209001)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,Grant No.BP0719037)。
文摘A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).
文摘Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany.
文摘In the version of this Article originally published online,there was an error in the schematics of Figures 2b and 2c.These errors have now been corrected in the original article.
文摘Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)=σ(E)N_(t)QC_(kbeam)^(e^(-λt_(i)))∫_(0)^(t_(i))e^(λt)dt,(2)The original article has been corrected.
文摘Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.
文摘In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.
文摘This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same sample series but with the focus of explaining the interplay between the catalytic behavior and properties of the cuprous thin films.A superior catalytic performance was demonstrated when water was added in the deposition process[1](see Ref.[47]in our publication corrected here).
文摘Correction to:Nuclear Science and Techniques(2024)35:145 https://doi.org/10.1007/s41365-024-01517-y In this article the author’s name Wan-Bing He was incorrectly written as Wan-Bin He.The original article has been corrected.
文摘In the article‘MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1’(Oncology Research,2024,Vol.32,No.3,pp.463−476.doi:10.32604/or.2023.044085),there was an error in the compilation of Fig.8D.We have revised Fig.8D to correct this error.A corrected version of Fig.8 is provided.This correction does not change any results or conclusions of the article.We apologize for any inconvenience caused.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2023C03116).
文摘Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY14A030001)。
文摘We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.
文摘We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems.These preconditioners are designed to treat the case of geometrically localized stiffness,where the convergence rates of iterative methods are degraded in a localized subregion of the mesh.Slower convergence may be caused by a number of factors,including the mesh size,anisotropy,highly variable coefficients,and more challenging physics.The approach taken in this work is to correct well-known preconditioners such as the block Jacobi and the block incomplete LU(ILU)with an adaptive inner subregion iteration.The goal of these preconditioners is to reduce the number of costly global iterations by accelerating the convergence in the stiff region by iterating on the less expensive reduced problem.The tolerance for the inner iteration is adaptively chosen to minimize subregion-local work while guaranteeing global convergence rates.We present analysis showing that the convergence of these preconditioners,even when combined with an adaptively selected tolerance,is independent of discretization parameters(e.g.,the mesh size and diffusion coefficient)in the subregion.We demonstrate significant performance improvements over black-box preconditioners when applied to several model convection-diffusion problems.Finally,we present performance results of several variations of iterative subregion correction preconditioners applied to the Reynolds number 2.25×10^(6)fluid flow over the NACA 0012 airfoil,as well as massively separated flow at 30°angle of attack.
文摘Correction to“Effect of CXCR3/HO-1 genes modified bone marrow mesenchymal stem cells on small bowel transplant rejection.World J Gastroenterol 2017 June 14;23(22):4016-4038”.In this article,there is a picture that needs to be corrected.
基金the International Center for Global Earth Models(ICGEM)for the height anomaly and gravity anomaly data and Bureau Gravimetrique International(BGI)for free-air gravity anomaly data from the World Gravity Map project(WGM2012)The authors are grateful to Głowny Urza˛d Geodezji i Kartografii of Poland for the height anomaly data of the quasi-geoid PL-geoid2021.
文摘At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.
基金Supported by National Natural Science Foundation of China(Grant Nos.52025121,52394263)National Key R&D Plan of China(Grant No.2023YFD2000301).
文摘This paper aims to develop an automatic miscalibration detection and correction framework to maintain accurate calibration of LiDAR and camera for autonomous vehicle after the sensor drift.First,a monitoring algorithm that can continuously detect the miscalibration in each frame is designed,leveraging the rotational motion each individual sensor observes.Then,as sensor drift occurs,the projection constraints between visual feature points and LiDAR 3-D points are used to compute the scaled camera motion,which is further utilized to align the drifted LiDAR scan with the camera image.Finally,the proposed method is sufficiently compared with two representative approaches in the online experiments with varying levels of random drift,then the method is further extended to the offline calibration experiment and is demonstrated by a comparison with two existing benchmark methods.
文摘Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more advantages in the geometric modeling of stochastic media.The explicit modeling method has high computational accuracy and high computational cost.The chord length sampling(CLS)method can improve computational efficiency by sampling the chord length during neutron transport using the matrix chord length?s probability density function.This study shows that the excluded-volume effect in realistic stochastic media can introduce certain deviations into the CLS.A chord length correction approach is proposed to obtain the chord length correction factor by developing the Particle code based on equivalent transmission probability.Through numerical analysis against reference solutions from explicit modeling in the RMC code,it was demonstrated that CLS with the proposed correction method provides good accuracy for addressing the excludedvolume effect in realistic infinite stochastic media.
文摘The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complications,necessitating a reevaluation of the speed and intensity of glycemic correction.Theories suggest swift blood sugar reductions may cause inflammation,oxidative stress,and neurovascular changes,resulting in complications.Healthcare providers should cautiously approach aggressive glycemic control,especially in long-standing,poorly controlled diabetes.Preventing and managing these complications requires a personalized,comprehensive approach with education,monitoring,and interdisciplinary care.Diabetes management must balance short and longterm goals,prioritizing overall well-being.This editorial underscores the need for a personalized,nuanced approach,focusing on equilibrium between glycemic control and avoiding overcorrection.