The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This al...The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This algorithm applies periodogram and parabolic interpolation to the cross correlation spectrum of band limited stochastic signals, and can obtain a continuous time delay estimator. Simulations are carried out to compare the performance of the proposed algorithm with that of other subsample TDE algorithms. Results show that the proposed algorithm outperforms other algorithms and reachs the Cramer-Rao lower bound (CRLB) at a high signal- to-noise ratio. For the wideband characteristic and the randomness of the transmitting signal, the proposed algo- rithm is suitable for the low probability of intercept radars.展开更多
To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor me...To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor measurements of the main strapdown inertial navigation system(M-SINS) and the slave strapdown inertial navigation system(S-SINS) are recorded for a few seconds and the integration of the data is calculated.Then,the possible maximum range of the delay value is defined and the points of the curve at different intervals are moved.The square of the differences between the corresponding points are calculated.Finally,the delay estimation can be acquired by the least-squares curve fitting of the M-SINS and the S-SINS.A delay compensation method by local data shifting is also presented.The simulation results demonstrate the effectiveness of delay estimation and indicate that the estimation accuracy is independent of the delay value.And the local data shifting compensation method can effectively reduce the errors of the transfer alignment caused by the reference information delay.展开更多
The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficie...The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.展开更多
This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation techn...This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ...A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two rec...The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.展开更多
The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,...The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.展开更多
Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase t...Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase transform(PHAT)has been widely used.PHAT is well-known for its robustness to reverberation and its sensitivity to noise,which is partly due to the fact that PHAT distributes same weights to the frequencies dominated by signal or noise.To alleviate this problem,two weighting functions are proposed in this paper.By taking a posteriori signal-to-noise ratio(SNR)into account to classify reliable and unreliable frequencies,different weights could be assigned.The first proposed weighting function borrows the idea of binary mask and distributes same weights to frequencies in same set,whereas,the second one assigns weights based on coherence function.Experiments showed the robustness of proposed methods to reverberation and noise for improving the performance of time delay estimation through various criteria.展开更多
In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an im...In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.展开更多
Time delay estimation (TDE) is an important issue in signal processing. Conventional TDE algorithms are usually efficient under white noise environments. In this paper, a joint noise reduction and -norm minimization m...Time delay estimation (TDE) is an important issue in signal processing. Conventional TDE algorithms are usually efficient under white noise environments. In this paper, a joint noise reduction and -norm minimization method is presented to enhance TDE in colored noise. An improved subspace method for colored noise reduction is first performed. Then the time delay is estimated by using an -norm minimization method. Because the clean speech signal form the noisy signal is well extracted by noise reduction and the -norm minimization method is robust, the TDE accuracy can be enhanced. Experiment results confirm that the proposed joint estimation method obtains more accurate TDE than several conventional algorithms in colored noise, especially in the case of low signal-to-noise ratio. 展开更多
In this paper,the problem of Parameter estimation in linear delayedsystems from sampled data is treated.Using numerical integral operation(NIO),anidentification model which is parametrized directly in the linear delay...In this paper,the problem of Parameter estimation in linear delayedsystems from sampled data is treated.Using numerical integral operation(NIO),anidentification model which is parametrized directly in the linear delayed system pa-rameters is got.With the least square(LS)method or the instrumental variable(Ⅳ)method,the recursive algorithm of parameter estimation is given.The result ofthe illustrated example shows that this algorithm is simple,rapid and accurrate.展开更多
Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signal...Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.展开更多
In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov...In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.展开更多
Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, ...Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.展开更多
An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation...An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.展开更多
This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performa...This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov-Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H∞ performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results.展开更多
--This paper presents a novel time delay estimation (TDE) method using the concept of entropy. The relative delay is estimated by minimizing the estimated joint entropy of multiple sensor output signals. When estima...--This paper presents a novel time delay estimation (TDE) method using the concept of entropy. The relative delay is estimated by minimizing the estimated joint entropy of multiple sensor output signals. When estimating the entropy, the information about the prior distribution of the source signal is not required. Instead, the Parzen window estimator is employed to estimate the density function of the source signal from multiple sensor output signals. Meanwhile, based on the Parzen window estimator, the Renyi's quadratic entropy (RQE) is incorporated to effectively and efficiently estimate the high-dimensional joint entropy of the multichannel outputs. Furthermore, a modified form of the joint entropy for embedding information about reverberation (multipath reflections) for speech signals is introduced to enhance the estimator's robustness against reverberation.展开更多
Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algor...Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algorithm and Marple algorithm of the maximum entropy power spectral estimation to non-resolvable multipath time delay estimatoin. The principles, the performaces and the results of computer simulation are given.展开更多
基金Supported by the National Mobile Communications Research Laboratory Foundation (N200902)~~
文摘The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This algorithm applies periodogram and parabolic interpolation to the cross correlation spectrum of band limited stochastic signals, and can obtain a continuous time delay estimator. Simulations are carried out to compare the performance of the proposed algorithm with that of other subsample TDE algorithms. Results show that the proposed algorithm outperforms other algorithms and reachs the Cramer-Rao lower bound (CRLB) at a high signal- to-noise ratio. For the wideband characteristic and the randomness of the transmitting signal, the proposed algo- rithm is suitable for the low probability of intercept radars.
基金The National Basic Research Program of China(973 Program) (No. 613121030201)the Fundamental Research of Commission of Science,Technology and Industry for National Defense (No. C1420080224)
文摘To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor measurements of the main strapdown inertial navigation system(M-SINS) and the slave strapdown inertial navigation system(S-SINS) are recorded for a few seconds and the integration of the data is calculated.Then,the possible maximum range of the delay value is defined and the points of the curve at different intervals are moved.The square of the differences between the corresponding points are calculated.Finally,the delay estimation can be acquired by the least-squares curve fitting of the M-SINS and the S-SINS.A delay compensation method by local data shifting is also presented.The simulation results demonstrate the effectiveness of delay estimation and indicate that the estimation accuracy is independent of the delay value.And the local data shifting compensation method can effectively reduce the errors of the transfer alignment caused by the reference information delay.
基金supported partly by the National Natural Science Foundation of China(6037208130570475)the Education Ministry Doctoral Degree Foundation of China(20050141025).
文摘The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundation of China(61473134,61573220)the Postdoctoral Science Foundation of China(2017M622231)
文摘This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
基金Projects 60372081, 30170259 and 30570475 supported by the National Natural Science Foundation of China, VSN-2005-01 the Opened Foundation of National Key-Lab of Vibration, Impact and Noise, 80523+1 种基金the Science Foundation of Hainan Province and Hj200501 the Foundation of Education Department of Hainan Province
文摘The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.
基金This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).
文摘The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.
基金supported by the National Natural Science Foundation of China(Grant No.61831019).
文摘Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase transform(PHAT)has been widely used.PHAT is well-known for its robustness to reverberation and its sensitivity to noise,which is partly due to the fact that PHAT distributes same weights to the frequencies dominated by signal or noise.To alleviate this problem,two weighting functions are proposed in this paper.By taking a posteriori signal-to-noise ratio(SNR)into account to classify reliable and unreliable frequencies,different weights could be assigned.The first proposed weighting function borrows the idea of binary mask and distributes same weights to frequencies in same set,whereas,the second one assigns weights based on coherence function.Experiments showed the robustness of proposed methods to reverberation and noise for improving the performance of time delay estimation through various criteria.
基金supported by the National Natural Science Foundation of China (No.60764001, 60835001, 60875035)
文摘In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.
文摘Time delay estimation (TDE) is an important issue in signal processing. Conventional TDE algorithms are usually efficient under white noise environments. In this paper, a joint noise reduction and -norm minimization method is presented to enhance TDE in colored noise. An improved subspace method for colored noise reduction is first performed. Then the time delay is estimated by using an -norm minimization method. Because the clean speech signal form the noisy signal is well extracted by noise reduction and the -norm minimization method is robust, the TDE accuracy can be enhanced. Experiment results confirm that the proposed joint estimation method obtains more accurate TDE than several conventional algorithms in colored noise, especially in the case of low signal-to-noise ratio.
文摘In this paper,the problem of Parameter estimation in linear delayedsystems from sampled data is treated.Using numerical integral operation(NIO),anidentification model which is parametrized directly in the linear delayed system pa-rameters is got.With the least square(LS)method or the instrumental variable(Ⅳ)method,the recursive algorithm of parameter estimation is given.The result ofthe illustrated example shows that this algorithm is simple,rapid and accurrate.
文摘Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.
文摘In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.
基金supported by the National Science and Technology Major Project of China(Grant No.AHJ2011Z001)the Major Research Project of Yili Normal University(Grant No.2016YSZD05)
文摘Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.
文摘An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.
基金supported by the Fund from National Board of Higher Mathematics(NBHM),New Delhi(Grant No.2/48/10/2011-R&D-II/865)
文摘This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov-Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H∞ performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results.
基金supported by the National Natural Science Foundation of China under Grant No.61172140‘985’ Key Projects for Excellent Teaching Team Supporting (postgraduate) under Grant No.A1098522-02
文摘--This paper presents a novel time delay estimation (TDE) method using the concept of entropy. The relative delay is estimated by minimizing the estimated joint entropy of multiple sensor output signals. When estimating the entropy, the information about the prior distribution of the source signal is not required. Instead, the Parzen window estimator is employed to estimate the density function of the source signal from multiple sensor output signals. Meanwhile, based on the Parzen window estimator, the Renyi's quadratic entropy (RQE) is incorporated to effectively and efficiently estimate the high-dimensional joint entropy of the multichannel outputs. Furthermore, a modified form of the joint entropy for embedding information about reverberation (multipath reflections) for speech signals is introduced to enhance the estimator's robustness against reverberation.
基金Supported by the of Doctoral Foundation of the State Education Commission of China
文摘Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algorithm and Marple algorithm of the maximum entropy power spectral estimation to non-resolvable multipath time delay estimatoin. The principles, the performaces and the results of computer simulation are given.