The pyrolytic process of polycarbosilane (PCS) with active fillers (Ti, TiH 2, TiB 2, Cr, CrSi 2) is investigated. The ceramic yields with active fillers reach over 100% in N 2 atmosphere, and no shrinkage occurs when...The pyrolytic process of polycarbosilane (PCS) with active fillers (Ti, TiH 2, TiB 2, Cr, CrSi 2) is investigated. The ceramic yields with active fillers reach over 100% in N 2 atmosphere, and no shrinkage occurs when 12vol% Ti, or 4vol% Cr, or 3vol% CrSi 2 is added into PCS. XRD patterns indicate that metal carbides and nitrides form by reacting with gaseous evolution and N 2.展开更多
The flexural strengths and oxidative resistant properties of the ceramics derived from polycarbosilane and active fillers (Ti, TiH 2, TiB 2, Cr, and CrSi 2) were measured and characterized. The introduction of acti...The flexural strengths and oxidative resistant properties of the ceramics derived from polycarbosilane and active fillers (Ti, TiH 2, TiB 2, Cr, and CrSi 2) were measured and characterized. The introduction of active fillers enhances slightly the flexural strengths, and further densification is required to obtain higher strengths. The oxidative resistant behaviors of the specimens with active fillers are, by means of weight gain in air, poorer compared with those without active fillers.展开更多
The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. T...The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.展开更多
The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC h...The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation.展开更多
Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti ac...Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti active filler at 250°C for 60 s.The results showed that the diffusion of all alloying elements of the HEA alloy was sluggish in the joint area.The joint strengths of HEA/HEA and HEA/6061-Al samples,as analyzed by shear testing,were(14.20±1.63)and(15.70±1.35)MPa,respectively.Observation of the fracture section showed that the HEA/6061-Al soldered joints presented obvious semi-brittle fracture characteristics.展开更多
Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clu...Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.展开更多
The joining of graphite, ceramic SiC and C_f/SiC composites via preceramic silicone resin(SR) at high temperature (8001400℃) was studied. The curing and pyrolysis process of SR, pyrolysis temperature, inert and a...The joining of graphite, ceramic SiC and C_f/SiC composites via preceramic silicone resin(SR) at high temperature (8001400℃) was studied. The curing and pyrolysis process of SR, pyrolysis temperature, inert and active fillers were especially discussed. The results show that the curing process of SR was accomplished by consuming Si—OH. The temperature of 1200℃ is the appropriate treating temperature for graphite and SiC ceramic, and the temperature of 1400℃ is suitable for C_f/SiC composites. Inert filler SiC powder(5%, mass fraction) has much positive influence on the shear strength of the joints. Active filler nano Ai, Si powder can greatly improve the properties of the joints treated at high temperature. The improvement is over 700%.展开更多
Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same ele...Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting.Herein,a bimetallic active site catalyst,which possessed an edge-riched MoS_(2)nanoflakes array vertically growing on cubic CoS_(2),forming a nuclear-shell heterogeneous configuration,termed CSC-Mo S_(2)@Co S_(2).was reported The optimal CSC-Mo S_(2)@Co S_(2)-24 possessed good dualfunctional electrocatalytic activity(hydrogen evolution(HER),10 m A·cm^(-2)@241.5 m V and oxygen evolution(OER),10 m A·cm^(-2)@350 m V).Especially,CSC-Mo S_(2)@CoS_(2)-24 exhibited an extremely high mass activity for HER,and only required an overpotential of~550 m V when reaching a large current density of 1422 m A·mg^(-1),which was20.6-fold that of the bulk CoS_(2)(69 m A·mg^(-1)),as well as exhibiting stability of up to 100 h.The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of Mo S_(2)@CoS_(2)hybrid could bring critical synergies,improving efficient mass transfer and electron transfer processes between Co S_(2)and Mo S_(2),which collaboratively promoted the electrocatalytic kinetics.It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides.展开更多
As a structural and functional material with excellent properties,ceramics play an extremely important role in a wide range of industries,including life and production.To expand the range of applications for ceramic m...As a structural and functional material with excellent properties,ceramics play an extremely important role in a wide range of industries,including life and production.To expand the range of applications for ceramic materials,ceramics are often joined to metals and then used.Among the physical and chemical joining methods of ceramics to metals,the AMB method is efficient and simple,suitable for industrial applications,and has been a hot topic of research.However,due to the problems of residual stresses caused by the large difference in thermal expansion coefficients between ceramic and metal brazing,composite fillers have become a very worthwhile solution by regulating the physical properties of the brazing material and improving the weld structure.This review describes the wetting principle and application of Ag‒Cu‒Ti active metal filler in the field of ceramic joining,with emphasis on the current stage of composite filler,and discusses the influence on the former brazing properties and organization after the introduction of dissimilar materials.展开更多
Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technolog...Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technology is exploited with strong bonding force between the diamond and substrate,which can realize metallurgical and chemical bonding between the filler metals and diamond abrasives.In this paper,the research reports on nickel-based fillers for brazing diamond grains at home and abroad in recent years are reviewed systematically,with emphasis on the influence of alloying elements and active elements on the properties of nickel-based fillers.The advantages and disadvantages of Cr,B,Si,P,Mn,Fe,Cu,W,C in nickel-based fillers and the negative effects of impurity elements were summarized.The shortcomings in the research and application of nickel-based fillers were pointed out,which provided theoretical guidance for further systematic research and development of related technologies.展开更多
Si3N4 ceramic was jointed to itself using a filler alloy of Cu76.5Pd8.5Ti15, and the mechanical properties of the jointwere measured and analyzed. By using a filler alloy of Cu76.5Pd8.5Ti15, the SisN4/SisN4 joints wer...Si3N4 ceramic was jointed to itself using a filler alloy of Cu76.5Pd8.5Ti15, and the mechanical properties of the jointwere measured and analyzed. By using a filler alloy of Cu76.5Pd8.5Ti15, the SisN4/SisN4 joints were obtained bybrazing at 1373~1473 K for 0.9~5.4 ks under a pressure of 2×10-3 MPa. The effect of brazing parameters on theshear strength of the joint was investigated. When the brazing temperature and holding time is 1423 K and 5.4 ksrespectively, the maximum shear strength of the Si3N4/Si3N4 joint is obtained to be 198 MPa.展开更多
文摘The pyrolytic process of polycarbosilane (PCS) with active fillers (Ti, TiH 2, TiB 2, Cr, CrSi 2) is investigated. The ceramic yields with active fillers reach over 100% in N 2 atmosphere, and no shrinkage occurs when 12vol% Ti, or 4vol% Cr, or 3vol% CrSi 2 is added into PCS. XRD patterns indicate that metal carbides and nitrides form by reacting with gaseous evolution and N 2.
文摘The flexural strengths and oxidative resistant properties of the ceramics derived from polycarbosilane and active fillers (Ti, TiH 2, TiB 2, Cr, and CrSi 2) were measured and characterized. The introduction of active fillers enhances slightly the flexural strengths, and further densification is required to obtain higher strengths. The oxidative resistant behaviors of the specimens with active fillers are, by means of weight gain in air, poorer compared with those without active fillers.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0305700)
文摘The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.
基金supported by The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technologythe National Natural Science Foundation of China (NSFC, 52070006)。
文摘The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation.
基金financial support of this work from the Ministry of Science and Technology, Taibei, China, under Projects No. MOST 105-ET-E-020002-ET, 105-2622-E-020-003-CC3
文摘Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti active filler at 250°C for 60 s.The results showed that the diffusion of all alloying elements of the HEA alloy was sluggish in the joint area.The joint strengths of HEA/HEA and HEA/6061-Al samples,as analyzed by shear testing,were(14.20±1.63)and(15.70±1.35)MPa,respectively.Observation of the fracture section showed that the HEA/6061-Al soldered joints presented obvious semi-brittle fracture characteristics.
基金the National Key Research and Development Program of China(2016YFA0201701)the National Natural Science Foundation of China(21878015).
文摘Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.
文摘The joining of graphite, ceramic SiC and C_f/SiC composites via preceramic silicone resin(SR) at high temperature (8001400℃) was studied. The curing and pyrolysis process of SR, pyrolysis temperature, inert and active fillers were especially discussed. The results show that the curing process of SR was accomplished by consuming Si—OH. The temperature of 1200℃ is the appropriate treating temperature for graphite and SiC ceramic, and the temperature of 1400℃ is suitable for C_f/SiC composites. Inert filler SiC powder(5%, mass fraction) has much positive influence on the shear strength of the joints. Active filler nano Ai, Si powder can greatly improve the properties of the joints treated at high temperature. The improvement is over 700%.
基金financially supported by the National Science Foundation of China(Nos.52203314,52071226 and 51872193)the Natural Science Foundations of Jiangsu Province(No.BK20210847)+1 种基金Jiangsu Key Laboratory for Biomass Energy and Material(No.JSBEM-S-201805)the Natural Science Foundations of the Jiangsu Higher Education Institutions of China(No.21KJB430042)。
文摘Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting.Herein,a bimetallic active site catalyst,which possessed an edge-riched MoS_(2)nanoflakes array vertically growing on cubic CoS_(2),forming a nuclear-shell heterogeneous configuration,termed CSC-Mo S_(2)@Co S_(2).was reported The optimal CSC-Mo S_(2)@Co S_(2)-24 possessed good dualfunctional electrocatalytic activity(hydrogen evolution(HER),10 m A·cm^(-2)@241.5 m V and oxygen evolution(OER),10 m A·cm^(-2)@350 m V).Especially,CSC-Mo S_(2)@CoS_(2)-24 exhibited an extremely high mass activity for HER,and only required an overpotential of~550 m V when reaching a large current density of 1422 m A·mg^(-1),which was20.6-fold that of the bulk CoS_(2)(69 m A·mg^(-1)),as well as exhibiting stability of up to 100 h.The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of Mo S_(2)@CoS_(2)hybrid could bring critical synergies,improving efficient mass transfer and electron transfer processes between Co S_(2)and Mo S_(2),which collaboratively promoted the electrocatalytic kinetics.It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides.
基金the National Natural Science Foundation of China(Grant Nos.51971204 and 52171081)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY19E010006 and LY21E010005).
文摘As a structural and functional material with excellent properties,ceramics play an extremely important role in a wide range of industries,including life and production.To expand the range of applications for ceramic materials,ceramics are often joined to metals and then used.Among the physical and chemical joining methods of ceramics to metals,the AMB method is efficient and simple,suitable for industrial applications,and has been a hot topic of research.However,due to the problems of residual stresses caused by the large difference in thermal expansion coefficients between ceramic and metal brazing,composite fillers have become a very worthwhile solution by regulating the physical properties of the brazing material and improving the weld structure.This review describes the wetting principle and application of Ag‒Cu‒Ti active metal filler in the field of ceramic joining,with emphasis on the current stage of composite filler,and discusses the influence on the former brazing properties and organization after the introduction of dissimilar materials.
基金supported by the Natural Science Foundation of Anhui Provincial Natural Science Foundation(No.2008085QE231)。
文摘Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technology is exploited with strong bonding force between the diamond and substrate,which can realize metallurgical and chemical bonding between the filler metals and diamond abrasives.In this paper,the research reports on nickel-based fillers for brazing diamond grains at home and abroad in recent years are reviewed systematically,with emphasis on the influence of alloying elements and active elements on the properties of nickel-based fillers.The advantages and disadvantages of Cr,B,Si,P,Mn,Fe,Cu,W,C in nickel-based fillers and the negative effects of impurity elements were summarized.The shortcomings in the research and application of nickel-based fillers were pointed out,which provided theoretical guidance for further systematic research and development of related technologies.
文摘Si3N4 ceramic was jointed to itself using a filler alloy of Cu76.5Pd8.5Ti15, and the mechanical properties of the jointwere measured and analyzed. By using a filler alloy of Cu76.5Pd8.5Ti15, the SisN4/SisN4 joints were obtained bybrazing at 1373~1473 K for 0.9~5.4 ks under a pressure of 2×10-3 MPa. The effect of brazing parameters on theshear strength of the joint was investigated. When the brazing temperature and holding time is 1423 K and 5.4 ksrespectively, the maximum shear strength of the Si3N4/Si3N4 joint is obtained to be 198 MPa.