The behavior of two parallel symmetric cracks in piezoelectric materials under anti-plane shear loading was studied by the Schmidt method for the permeable crack face conditions. By using the Fourier transform, the pr...The behavior of two parallel symmetric cracks in piezoelectric materials under anti-plane shear loading was studied by the Schmidt method for the permeable crack face conditions. By using the Fourier transform, the problem can be solved with two pairs of dual integral equations in which the unknown variable is the jump of the diplacement across the crack surfaces. These equations were solved using the Schmidt method. The results show that the stress and the electric displacement intensity factors of cracks depend on the geometry of the crack. Contrary to the impermeable crack surface condition solution, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.展开更多
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through th...The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations in which the unknown variables are the jumps of displacements across crack surfaces. To Solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.展开更多
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, ...Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.展开更多
文摘The behavior of two parallel symmetric cracks in piezoelectric materials under anti-plane shear loading was studied by the Schmidt method for the permeable crack face conditions. By using the Fourier transform, the problem can be solved with two pairs of dual integral equations in which the unknown variable is the jump of the diplacement across the crack surfaces. These equations were solved using the Schmidt method. The results show that the stress and the electric displacement intensity factors of cracks depend on the geometry of the crack. Contrary to the impermeable crack surface condition solution, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.
基金Project supported by the National Natural Science Foundation of China (Nos.10572043 and 10572155)the Natural Science Foundation for Excellent Young Investigators of Heilongjiang Province(No.JC04-08)
文摘The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations in which the unknown variables are the jumps of displacements across crack surfaces. To Solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.
文摘Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.