Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM)....Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.展开更多
This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing gro...This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.展开更多
A hydro tunnel in Serbia's capitol Belgrade is currently constructed using EPB TBM (earth pressure balance tunneling machine). To assess the risk of TBM jamming, an analysis is made including calculation of expecte...A hydro tunnel in Serbia's capitol Belgrade is currently constructed using EPB TBM (earth pressure balance tunneling machine). To assess the risk of TBM jamming, an analysis is made including calculation of expected ground pressures on the machine and critical frictions and pressures along the route, which could stop the advance due to limitations of the machine. The ground pressures were calculated using 2D plain strain analytical and numerical methods, and using 2D+ plain strain axisymmetrical numerical method to simulate effects of TBM advance, effects of deformations in front of TBM and effects of rigidity changes in area of TBM shield tail where ground abruptly looses contact with the shield and could additionally deform toward the concrete liner. Calculated deformations and stresses varied along the TBM and concrete liner, with prominent concentrations around the cutter head and TBM shield tail. The results of analytical and numerical calculations were compared and combined to construct diagrams of expected ground pressures on TBM along the tunnel route, and diagrams of critical frictions that may cause the jamming. Based on this analysis and ongoing measurements of ground pressures on TBM, recommendations have been made on excavation regimes, and additional investigations in front of TBM. So far a relatively fair match of the predicted and measured ground pressures on TBM is observed.展开更多
为解决超千米深井巷道建设面临的严峻挑战,通过对现有的巷道掘进、支护技术与全断面岩石隧道掘进机(TBM)技术对比分析,结果表明:全断面岩石隧道掘进机优势明显,且满足超千米深井巷道建设的需求,现代化大型矿井也具备引入全断面掘进机的...为解决超千米深井巷道建设面临的严峻挑战,通过对现有的巷道掘进、支护技术与全断面岩石隧道掘进机(TBM)技术对比分析,结果表明:全断面岩石隧道掘进机优势明显,且满足超千米深井巷道建设的需求,现代化大型矿井也具备引入全断面掘进机的条件,将TBM引入超千米深井巷道建设,在解决所涉及的关键岩石力学和机械制造问题后加以改进,称之为全断面岩石巷道掘进机(RBM——Full Face Roadway Boring Machine)。由于煤矿深部巷道的建设环境与隧洞建设环境存在显著差异,RBM施工将面临两大关键问题——卡盾和刀盘破岩问题。为了揭示RBM卡盾机理,指出了其关键岩石力学问题,包括超千米深井巷道RBM开挖卸荷路径下围岩挤压大变形机理,护盾周围围岩挤压变形分布规律,围岩-护盾-支护相互作用机理,卡盾判据,卡盾防治理论及方法。展开更多
基金Alexander von Humboldt-Foundation (AvH) for the financial support as a research fellowthe financial support of the Scientific and Technological Research Council of Turkey (TüB_ITAK) under Project No. MAG-114M568
文摘Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.
文摘This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.
文摘A hydro tunnel in Serbia's capitol Belgrade is currently constructed using EPB TBM (earth pressure balance tunneling machine). To assess the risk of TBM jamming, an analysis is made including calculation of expected ground pressures on the machine and critical frictions and pressures along the route, which could stop the advance due to limitations of the machine. The ground pressures were calculated using 2D plain strain analytical and numerical methods, and using 2D+ plain strain axisymmetrical numerical method to simulate effects of TBM advance, effects of deformations in front of TBM and effects of rigidity changes in area of TBM shield tail where ground abruptly looses contact with the shield and could additionally deform toward the concrete liner. Calculated deformations and stresses varied along the TBM and concrete liner, with prominent concentrations around the cutter head and TBM shield tail. The results of analytical and numerical calculations were compared and combined to construct diagrams of expected ground pressures on TBM along the tunnel route, and diagrams of critical frictions that may cause the jamming. Based on this analysis and ongoing measurements of ground pressures on TBM, recommendations have been made on excavation regimes, and additional investigations in front of TBM. So far a relatively fair match of the predicted and measured ground pressures on TBM is observed.
基金国家重点基础研究发展计划项目(973计划)(No.2015CB058102No.2014CB046904)+3 种基金国家自然科学基金面上项目(No.51474205)supported by the National Program on Key Basic Resaerch Project of China(973 Program)(2015CB0581022014CB046904)the General Program of National Natural Science Foundation of China(51474205)
文摘为解决超千米深井巷道建设面临的严峻挑战,通过对现有的巷道掘进、支护技术与全断面岩石隧道掘进机(TBM)技术对比分析,结果表明:全断面岩石隧道掘进机优势明显,且满足超千米深井巷道建设的需求,现代化大型矿井也具备引入全断面掘进机的条件,将TBM引入超千米深井巷道建设,在解决所涉及的关键岩石力学和机械制造问题后加以改进,称之为全断面岩石巷道掘进机(RBM——Full Face Roadway Boring Machine)。由于煤矿深部巷道的建设环境与隧洞建设环境存在显著差异,RBM施工将面临两大关键问题——卡盾和刀盘破岩问题。为了揭示RBM卡盾机理,指出了其关键岩石力学问题,包括超千米深井巷道RBM开挖卸荷路径下围岩挤压大变形机理,护盾周围围岩挤压变形分布规律,围岩-护盾-支护相互作用机理,卡盾判据,卡盾防治理论及方法。