期刊文献+
共找到447篇文章
< 1 2 23 >
每页显示 20 50 100
Progress in Research on Structural Ceramic Materials Toughened by Graphene
1
作者 Wenyu Yao Yalong Zhang 《Expert Review of Chinese Chemical》 2024年第2期37-42,共6页
Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp... Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene. 展开更多
关键词 GRAPHENE ceramics mixing materials SINTERING toughenING
下载PDF
Toughening mechanism of lined Al_2O_3-ZrO_2 multiphaseceramics in SHS composite pipes 被引量:11
2
作者 Guibo Yu Wen Yan Shuhai Wang Baoxin Su Baolai Tan 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期178-182,共5页
Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of ... Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of the ceramics was observed by means of SEM and EPMA. The fracture toughness of the multiphase ceramics was tested by using the Vickers indentation method. The fracture toughness of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.96 MPa·m^1/2 and that of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.23 MPa·m^1/2. The toughening mechanisms were systematically investigated by means of SEM and XRD. The results show that the bridging toughening mechanism, stress induced ZrO2 transformation toughening mechanism, and microcrack toughening mechanism are the predominant toughening mechanism. 展开更多
关键词 SHS multiphase ceramics eutectic structure toughening mechanism
下载PDF
Transformation toughening of Al_2O_3/ZrO_2 laminated ceramics with residual compressive stress 被引量:2
3
作者 Bei Chen Chuan Cheng +1 位作者 Lan Xiong Li-Ao Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期449-453,共5页
With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstructure characteristics, phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Comp... With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstructure characteristics, phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Compared with monolithic Al2O3/ZrO2 ceramics, the existence of surface compressive stresses greatly restrained the growth of ZrO2 and Al2O3 grains at high sinter temperature, fined the grain size, and increased the content of metastable t-ZrO2, which made the fracture transformation energy quantity 70% higher than that of the monolithic ceramics. The trans-granular and inter-granular fracture features were observed in the surface and center layers, which further verified that transformation toughening is the main mechanism, whereas, micro-crack toughening is helpful for enhancing fracture toughness. 展开更多
关键词 laminated ceramics transformation toughening fracture micrograph grain size surface compressive stress
下载PDF
Mechanical Properties of a new Dental all-ceramic Material-zirconia Toughened Nanometer-ceramic Composite 被引量:1
4
作者 CHAIFeng XULing +2 位作者 CHAOYong-lie LIAOYun-mao ZHAOYi-min 《口腔医学研究》 CAS CSCD 2003年第6期483-487,共5页
目的 :口腔全瓷修复体以其独特优越性受到医患青睐 ,但脆性问题一直限制其应用范围及使用可靠性。本研究旨在研制用于玻璃渗透全瓷修复的纳米氧化锆增韧陶瓷并全面检测评价其力学性能。方法 :采用化学共沉淀与球磨相结合的方法合成纳米... 目的 :口腔全瓷修复体以其独特优越性受到医患青睐 ,但脆性问题一直限制其应用范围及使用可靠性。本研究旨在研制用于玻璃渗透全瓷修复的纳米氧化锆增韧陶瓷并全面检测评价其力学性能。方法 :采用化学共沉淀与球磨相结合的方法合成纳米氧化锆增韧陶瓷 (α -Al2 O3 /nZrO2 ceramicspowder ,W) ,扫描电镜评价陶瓷材料的粉体形态特征及粒度分布。预制氧化锆含量不同的陶瓷粉体 (5wt% ,10wt% ,15wt%and 2 0wt% ) ,采用粉浆涂塑技术将材料制成标准试件 ,并在不同温度下 (12 0 0~ 16 0 0℃ )烧结成型 ,用三点弯曲法及单边刀口梁法检测材料试件的抗弯强度和断裂韧性。结果 :1)α -Al2 O3 /nZrO2 材料粉体粒度分布范围大致为 0 .0 2~ 3.0 μm ,其中超细粉体 (低于 0 .1μm)占 2 0 % ;2 )不同烧结温度组试件的力学强度有显著差异 (P <0 .0 5 ) ,14 5 0℃和 16 0 0℃组高于12 0 0℃组 ;3)相同烧结温度下不同氧化锆含量组材料强度有显著差异 ,一定范围内氧化锆含量增高有助于材料的增韧增强。结论 :本研究所研制的纳米氧化锆增韧陶瓷材料组分配比及微观特征能增韧增强材料 。 展开更多
关键词 口腔全瓷修复体 力学性能 烧结温度 纳米陶瓷复合体 氧化锆增韧陶瓷
下载PDF
ASYMPTOTIC ANALYSIS OF PLANE-STRAIN MODE I STEADY-STATE CRACK GROWTH IN TRANSFORMATION TOUGHENINGCERAMICS(Ⅱ)
5
作者 张浠 叶裕恭 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第7期689-696,共8页
Based on a constitutive law which includes the shear components oftransformation plasticity. the asymptotic solutions to near-tip fields of plane-strainmode I steadity propagating cracks in rransformed ceramics are o... Based on a constitutive law which includes the shear components oftransformation plasticity. the asymptotic solutions to near-tip fields of plane-strainmode I steadity propagating cracks in rransformed ceramics are obtained for the caseof linear isotropic hardening. The Stress singularity. the distributions of stresses andvelocities at the crack tip are determmed for various material parameters. The factorsinfluencing the near-tip fields are discussed in detail. 展开更多
关键词 transformation toughening ceramics shear effect crack growth asymptotic method
下载PDF
Boron nitride microribbons strengthened and toughened alumina composite ceramics with excellent mechanical,dielectric,and thermal conductivity properties
6
作者 Jilin Wang Dongping Lu +8 位作者 Weiping Xuan Yuchun Ji Ruiqi Chen Shaofei Li Wenbiao Li Wenzhuo Chen Shilin Tang Guoyuan Zheng Fei Long 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第4期496-506,共11页
Aluminum oxide(Al_(2)O_(3))ceramics have been widely utilized as circuit substrates owing to their exceptional performance.In this study,boron nitride microribbon(BNMR)/Al_(2)O_(3)composite ceramics are prepared using... Aluminum oxide(Al_(2)O_(3))ceramics have been widely utilized as circuit substrates owing to their exceptional performance.In this study,boron nitride microribbon(BNMR)/Al_(2)O_(3)composite ceramics are prepared using spark plasma sintering(SPS).This study examines the effect of varying the amount of toughened phase BNMR on the density,mechanical properties,dielectric constant,and thermal conductivity of BNMR/Al_(2)O_(3)composite ceramics while also exploring the mechanisms behind the toughening and increased thermal conductivity of the fabricated ceramics.The results showed that for a BNMR content of 5 wt%,BNMR/Al_(2)O_(3)composite ceramics displayed more enhanced characteristics than pure Al_(2)O_(3)ceramics.In particular,the relative density,hardness,fracture toughness,and bending strength were 99.95%±0.025%,34.11±1.5 GPa,5.42±0.21 MPa·m^(1/2),and 375±2.5 MPa,respectively.These values represent increases of 0.76%,70%,35%,and 25%,respectively,compared with the corresponding values for pure Al_(2)O_(3)ceramics.Furthermore,during the SPS process,BNMRs are subjected to high temperatures and pressures,resulting in the bending and deformation of the Al_(2)O_(3)matrix;this leads to the formation of special thermal pathways within it.The dielectric constant of the composite ceramics decreased by 25.6%,whereas the thermal conductivity increased by 45.6%compared with that of the pure Al_(2)O_(3)ceramics.The results of this study provide valuable insights into ways of enhancing the performance of Al_(2)O_(3)-based ceramic substrates by incorporating novel BNMRs as a second phase.These improvements are significant for potential applications in circuit substrates and related fields that require high-performance materials with improved mechanical properties and thermal conductivities. 展开更多
关键词 boron nitride microribbons/aluminum oxide(BNMRs/Al_(2)O_(3))composite ceramics boron nitride microribbon(BNMR) spark plasma sintering(SPS) strengthening and toughening thermal conductivity
原文传递
Wear Characteristics of Zirconia Toughened Ceramic Drawing Dies
7
作者 Zhigang CHEN (Ceramic Research Lab., Jiangsu University of Science and Technology, 212013, Zhenjiang, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期380-384,共5页
Wear resistance of several zirconia toughened ceramics in comparison with a metal-ceramic Co-WC has been studied in drawing wire field test. Result indicates that the harder the ceramic die, the longer the service lif... Wear resistance of several zirconia toughened ceramics in comparison with a metal-ceramic Co-WC has been studied in drawing wire field test. Result indicates that the harder the ceramic die, the longer the service life. Excellent wear resistance of ceramic die is obtained with a very high hardness (19 GPa). The service life is nearly three times that of Co-WC die. SEM observation on wear surfaces showed that material removal is mainly caused by plastic flow and ploughing process. But when the ceramic is composed of zirconia, alumina and some titanium carbide, micro-chipping and tribochemical reaction take place, and wear rate increases. Wear and friction induced martensite was detected by XRD. The T-M (tetragonal to monoclinic) phase transformation has a contribution to inhibiting microfracture. 展开更多
关键词 WC Wear Characteristics of Zirconia toughened ceramic Drawing Dies
下载PDF
Synergistically Toughening Effect of SiC Whiskers and Nanoparticles in Al_2O_3-based Composite Ceramic Cutting Tool Material 被引量:4
8
作者 LIU Xuefei LIU Hanlian +3 位作者 HUANG Chuanzhen WANG Limei ZOU Bin ZHAO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期977-982,共6页
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ... In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool. 展开更多
关键词 Al2O3-based ceramic cutting tool materials SiC whiskers SiC nanoparticles mechanical properties toughening and strengthening mechanisms
下载PDF
FRACTURAL PROCESS AND TOUGHENING MECHANISM OF LAMINATED CERAMIC COMPOSITES 被引量:3
9
作者 Zhang Yafang Tang Chun'an +1 位作者 Zhang Yongbin Liang Zhenzao 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期141-148,共8页
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p... Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper. 展开更多
关键词 laminated ceramic composite toughenING numerical simulation
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
10
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
Strengthening and Toughening Effect of Yttrium on Al_(2)O_(3)/TiCN Ceramic Tool Material 被引量:1
11
作者 许崇海 艾兴 +1 位作者 黄传真 邓建新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期73-76,共4页
The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurit... The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the AL2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties. 展开更多
关键词 rare earths YTTRIUM ceramic tool material strengthening and toughening
下载PDF
Variations of Microstructure and Mechanical Properties of Si-B-O-N Ceramics with Sintering Temperatures 被引量:1
12
作者 Junbao ZHANG, Guangwu WEN, Tingquan LEI, Dechang JIA and Jiancun RAOSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期343-346,共4页
Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been... Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated. Crystallization of Si-B-O-N ceramics occurred at about 1400癈. Density, elastic modulus, and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600癈. By contrast, hardness and frac-ture toughness of the ceramics monotonically changed with increasing sintering temperatures. Hardness decreased, while the fracture toughness increased. The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed 展开更多
关键词 Si-B-O-N ceramics Microstructure. Mechanical properties toughening mechanisms
下载PDF
A NEW METHOD TO DETERMINE THE R-CURVE OF CERAMICS-FRACTURE GRATING METHOD
13
作者 Shi, L Dai, FL Jiang, XL 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第1期81-87,共7页
The etching technique of the single-lined zero-thickness specimen grating is applied to the surface of the SiC fiber toughening Si3N4 ceramic composite specimen. The position of the crack and the crack length during t... The etching technique of the single-lined zero-thickness specimen grating is applied to the surface of the SiC fiber toughening Si3N4 ceramic composite specimen. The position of the crack and the crack length during the process of crack extension when the load is applied and gradually increased can be determined by recording the output voltage value of the Wheatstone bridge in which the ceramic specimen with the fracture grating on is located. The crack-growth-resistance(R-curve) of this material is thus obtained. 展开更多
关键词 fiber toughening ceramic composite zero thickness specimen grating ETCHING crack extension R-CURVE
下载PDF
Preparation and toughening mechanism of Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shell units 被引量:1
14
作者 Yingjie Shi Weixing Li +7 位作者 Xiaorong Zhang Jiachao Jin Jilin Wang Yu Dong Jingbo Mu Guangsuo Wang Xiaoliang Zhang Zhixiao Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第12期2371-2381,共11页
In this paper, the concept of incorporating core–shell structured units as secondary phases totoughen Al_(2)O_(3) ceramics is proposed. Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shellunits are ... In this paper, the concept of incorporating core–shell structured units as secondary phases totoughen Al_(2)O_(3) ceramics is proposed. Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shellunits are successfully synthesized using a combination of molten salt methodology and spark plasmasintering. The synthesis of B_(4)C@TiB_(2) core–shell toughening units stems from the prior production ofcore–shell structural B_(4)C@TiB_(2) powders, and this core–shell structure is effectively preserved withinthe Al_(2)O_(3) matrix after sintering. The B_(4)C@TiB_(2) core–shell toughening unit consists of a micron-sizedB4C core enclosed by a shell approximately 500 nm in thickness, composed of numerous nanosizedTiB2 grains. The regions surrounding these core–shell units exhibit distinct geometric structures andencompass multidimensional variations in phase composition, grain dimensions, and thermal expansioncoefficients. Consequently, intricate stress distributions emerge, fostering the propagation of cracks inmultiple dimensions. This behavior consumes a considerable amount of crack propagation energy,thereby enhancing the fracture toughness of the Al_(2)O_(3) matrix. The resulting Al_(2)O_(3) composite ceramicsdisplay relative density of 99.7%±0.2%, Vickers hardness of 21.5±0.8 GPa, and fracture toughness6.92±0.22 MPa·m1/2. 展开更多
关键词 Al_(2)O_(3)composite ceramics microstructure design core-shell structure toughening mechanism spark plasma sintering(SPS)
原文传递
Effect of Interfacial Bonding on the Toughening of Al_2O_3/Ni Ceramic Matrix Composites
15
作者 Xudong SUN(Dept. of Materials Science and Engineering, Northeastern University, Shenyang 110006, China)J.A. Yeomans(Dept. of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, UK) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期29-34,共6页
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation.... The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite. 展开更多
关键词 AL Effect of Interfacial Bonding on the toughening of Al2O3/Ni ceramic Matrix Composites NI
下载PDF
金属间化合物MoSi_(2)协同SiC晶须增韧Si_(3)N_(4)陶瓷刀具的制备及切削性能
16
作者 周后明 周金虎 +1 位作者 刘刚 陈皓月 《材料导报》 EI CSCD 北大核心 2024年第2期168-172,共5页
为进一步提高Si_(3)N_(4)陶瓷刀具的强度和韧性,克服单一增韧方式以及金属粘结剂增韧的局限性,本工作利用金属间化合物协同晶须对其增韧补强,将MoSi_(2)颗粒和SiC晶须添加到Si_(3)N_(4)陶瓷基体中,制备出Si_(3)N_(4)/MoSi_(2)/SiC_(w)(S... 为进一步提高Si_(3)N_(4)陶瓷刀具的强度和韧性,克服单一增韧方式以及金属粘结剂增韧的局限性,本工作利用金属间化合物协同晶须对其增韧补强,将MoSi_(2)颗粒和SiC晶须添加到Si_(3)N_(4)陶瓷基体中,制备出Si_(3)N_(4)/MoSi_(2)/SiC_(w)(SMC)复合陶瓷刀具材料。结果表明:SiC晶须的加入可以有效提高Si_(3)N_(4)陶瓷的断裂韧性,MoSi_(2)的加入可以显著提升Si_(3)N_(4)陶瓷的抗弯强度。连续干切削45#淬火钢时,相较于商用刀具YBC251,SMC复合陶瓷刀具的寿命及切削稳定性提升显著。其中,添加了SiC晶须的SMC3(MoSi_(2)10%(未作特别说明时均为质量分数),SiC_(w)10%)及SMC2(MoSi_(2)0%,SiC_(w)10%)刀具的寿命均比未添加SiC_(w)的SMC1(MoSi_(2)10%,SiC_(w)0%)更长。随着切削深度的增加,未添加MoSi_(2)的SMC2易出现崩刃现象,切削稳定性不如协同增韧的SMC3。 展开更多
关键词 陶瓷刀具 协同增韧 切削 力学性能 微观结构
下载PDF
超高温陶瓷复合材料研究进展
17
作者 张幸红 王义铭 +2 位作者 程源 董顺 胡平 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第6期571-590,共20页
随着高速飞行器朝着更宽空域、更长时间和更高速度的方向发展,对飞行器的鼻锥、前缘和发动机燃烧室等关键结构的热防护性能提出了更加严苛的要求,发展在极端环境下使用的高性能热防护材料是当前的研究重点。超高温陶瓷复合材料具有优异... 随着高速飞行器朝着更宽空域、更长时间和更高速度的方向发展,对飞行器的鼻锥、前缘和发动机燃烧室等关键结构的热防护性能提出了更加严苛的要求,发展在极端环境下使用的高性能热防护材料是当前的研究重点。超高温陶瓷复合材料具有优异的抗氧化烧蚀性能,是一类极具应用潜力的非烧蚀型热防护材料。然而,本征脆性问题限制了超高温陶瓷复合材料的工程化应用,需通过组分结构调控对其进行强韧化。同时,飞行器有效载荷提升也对超高温陶瓷复合材料提出了轻量化的要求。本文系统概述了超高温陶瓷复合材料近年来取得的主要研究进展,包括压力烧结、泥浆浸渍、前驱体浸渍裂解、反应熔渗、化学气相渗透/沉积与“固-液”组合工艺等制备方法,颗粒、晶须、软相物质、短切纤维和连续纤维等强韧化方法及其机制,抗氧化烧蚀性能与机理,以及轻量化设计等。讨论了超高温陶瓷复合材料组分、微结构和性能之间的关系,并指出了超高温陶瓷复合材料目前存在的挑战以及未来的发展趋势。 展开更多
关键词 超高温陶瓷 复合材料 强韧化 抗氧化烧蚀 轻量化 综述
下载PDF
基于磁控溅射改善陶瓷涂层断裂韧性的研究进展
18
作者 高正源 李昱志 +2 位作者 翟帅 汪松林 孙鹏飞 《涂料工业》 CAS CSCD 北大核心 2024年第8期76-81,共6页
陶瓷涂层因其优异的耐磨、隔热等性能,被应用于各工程领域,但其断裂韧性差、质脆的特点严重限制了其推广应用。为了改善陶瓷涂层质脆的缺陷,研究人员采用了多种方法对其进行增韧改性,文中论述了陶瓷涂层的增韧方法以及对应机制,综述了... 陶瓷涂层因其优异的耐磨、隔热等性能,被应用于各工程领域,但其断裂韧性差、质脆的特点严重限制了其推广应用。为了改善陶瓷涂层质脆的缺陷,研究人员采用了多种方法对其进行增韧改性,文中论述了陶瓷涂层的增韧方法以及对应机制,综述了磁控溅射原理以及调控其工艺参数、掺杂其他元素等方法对陶瓷涂层结构、应力、晶界等的影响。总结了目前陶瓷涂层断裂韧性与硬度不可兼得、增韧机制受涂层尺寸影响等研究难点,并从磁控溅射工艺参数、多种工艺和增韧机制协同增韧等方面对提高陶瓷涂层断裂韧性进行了展望。 展开更多
关键词 陶瓷涂层 磁控溅射 断裂韧性 增韧机制
下载PDF
Cr_(2)O_(3)添加量对SrAl_(12)O_(19)-Al_(2)O_(3)-ZrO_(2)复相陶瓷力学性能和微观结构影响
19
作者 江书豪 杨金萍 +4 位作者 孙怡 马腾 毛君妍 章健 王士维 《陶瓷学报》 CAS 北大核心 2024年第4期720-728,共9页
以3Y-TZP、α-Al_(2)O_(3)、Sr(NO3)2为基础原料,掺杂了不同含量的Cr(NO_(3))_(3)·9H_(2)O,通过无压预烧和热等静压烧结结合的方式制备了SrO和Cr_(2)O_(3)共掺杂的ZTA复相陶瓷。研究了Cr_(2)O_(3)添加量对SrAl_(12)O_(19)-Al_(2)O_... 以3Y-TZP、α-Al_(2)O_(3)、Sr(NO3)2为基础原料,掺杂了不同含量的Cr(NO_(3))_(3)·9H_(2)O,通过无压预烧和热等静压烧结结合的方式制备了SrO和Cr_(2)O_(3)共掺杂的ZTA复相陶瓷。研究了Cr_(2)O_(3)添加量对SrAl_(12)O_(19)-Al_(2)O_(3)-ZrO_(2)复相陶瓷微观结构和力学性能的影响。XRD衍射谱显示,随着Cr_(2)O_(3)添加量的增多,α-Al_(2)O_(3)和SrAl_(12)O_(19)的衍射峰向左偏移,晶胞参数逐渐增大。结合EDS分析推测,Cr_(2)O_(3)更偏向于进入SrAl_(12)O_(19)的晶格。微观结构显示,Cr_(2)O_(3)的加入促进了晶粒生长。随着Cr_(2)O_(3)添加量的增多,断裂韧性和抗弯强度先上升后下降。当Cr_(2)O_(3)掺杂量为0.50 wt.%时力学性能最佳,其显微硬度、断裂韧性和抗弯强度分别为18.45 GPa、6.9 MPa·m^(1/2)和910 MPa。 展开更多
关键词 Cr_(2)O_(3) ZTA复相陶瓷 SrAl_(12)O_(19) 原位增韧 力学性能
下载PDF
基于石墨烯-碳化硅纳米线协同增韧的高硬度高韧性超细WC陶瓷 被引量:1
20
作者 沈学会 徐楠 +2 位作者 苏豪 何向平 何建群 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第1期114-126,共13页
石墨烯已被广泛应用于陶瓷材料的增韧,如何实现其在陶瓷材料基体的良好分散性是提高其增韧效率的瓶颈问题。本研究通过放电等离子烧结,制备了二维石墨烯(G)和一维碳化硅纳米线(SiC_(nw))协同增韧WC陶瓷材料;优化了烧结温度、保温时间及... 石墨烯已被广泛应用于陶瓷材料的增韧,如何实现其在陶瓷材料基体的良好分散性是提高其增韧效率的瓶颈问题。本研究通过放电等离子烧结,制备了二维石墨烯(G)和一维碳化硅纳米线(SiC_(nw))协同增韧WC陶瓷材料;优化了烧结温度、保温时间及施加压力;重点研究了石墨烯和碳化硅纳米线在促进陶瓷材料致密化、微观结构演变及性能提升方面的协同作用。结果表明:采用60 MPa压强,在1900℃保温15 min,WC-0.15wt.%G-0.45wt.%SiC_(nw)可获得最优力学性能,硬度、抗弯强度和韧性分别为25.6 GPa、1499 MPa和11.6 MPa·m^(1/2)。主要增韧机理为:G/SiC_(nw)裂纹偏转、桥联和拔出。本研究有助于高强韧陶瓷基复合材料的发展。 展开更多
关键词 WC陶瓷 石墨烯 碳化硅纳米线 力学性能 增韧机理
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部