This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The...This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The proposed impedance matching network(IMN)is adopted to reduce circuit complexity,to improve circuit performance,and power conversion efficiency(PCE)of the rectifier at low input power.The fabricated rectifier prototype operates at 0.92,1.82,2.1,2.46 and 2.65 GHz covering GSM/900,GSM/1800,UMTS2100,and Wi-Fi/2.45–LTE2600.The size of the compact rectifier on the PCB board is 0.13λ_(g)×0.1λ_(g).The fabricated rectifier achieved an RF-to DC(radio frequency direct current)PCE of 31.8%,24%,22.7%,and 15%,and 14.1%for−20 dBm at the five respective measured operating frequencies.The circuit attains a peak RF-to-DC PCE of 82.3%for an input power of 3 dBm at 0.92 GHz.The proposed rectifier realizes an ambient output dc voltage of 454 mV for multi-tone input signals from the two ports.The rectifier drives a bq25504-674 power management module(PMM)to achieve 1.21 V from the two-port connection.The rectifier has the ability to exploit both frequency domain through the multi-band operation with good impedance bandwidth and a spatial domain using dual-port configuration.Hence,it is a potential candidate for various applications in radio frequency energy harvesting(RFEH)system.展开更多
针对传统背靠背三电平变换器成本高、体积大、结构复杂等问题,文中提出一种新型双端口三电平变换器拓扑,通过器件复用方式减少开关器件数量,优化系统结构。首先,详细分析所提新型拓扑的工作原理,给出单相桥臂的6种有效开关状态、电流流...针对传统背靠背三电平变换器成本高、体积大、结构复杂等问题,文中提出一种新型双端口三电平变换器拓扑,通过器件复用方式减少开关器件数量,优化系统结构。首先,详细分析所提新型拓扑的工作原理,给出单相桥臂的6种有效开关状态、电流流通路径及对应双端口输出电平,并对各开关器件的电压应力进行分析。其次,研究并设计一种适用于该新型拓扑的载波层叠脉宽调制策略,加入直流偏移量以避免调制波重合产生的影响。然后,进一步分析该策略在同频与异频工作模式下的调制度范围、相角差约束等关键问题,给出各工作模式下直流偏移量选取原则及两端口调制度约束范围。最后,基于DSP-FPGA-Typhoon HIL 402实验平台对不同工作模式进行验证。实验结果表明,在实现所提新型拓扑双端口电压电流稳定输出的前提下,加入直流偏移量的载波层叠脉宽调制策略使得变换器输出的电能质量良好,谐波含量低。展开更多
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin...As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.展开更多
基金supported by TM R&D Malaysia under project number MMUE/190001.
文摘This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The proposed impedance matching network(IMN)is adopted to reduce circuit complexity,to improve circuit performance,and power conversion efficiency(PCE)of the rectifier at low input power.The fabricated rectifier prototype operates at 0.92,1.82,2.1,2.46 and 2.65 GHz covering GSM/900,GSM/1800,UMTS2100,and Wi-Fi/2.45–LTE2600.The size of the compact rectifier on the PCB board is 0.13λ_(g)×0.1λ_(g).The fabricated rectifier achieved an RF-to DC(radio frequency direct current)PCE of 31.8%,24%,22.7%,and 15%,and 14.1%for−20 dBm at the five respective measured operating frequencies.The circuit attains a peak RF-to-DC PCE of 82.3%for an input power of 3 dBm at 0.92 GHz.The proposed rectifier realizes an ambient output dc voltage of 454 mV for multi-tone input signals from the two ports.The rectifier drives a bq25504-674 power management module(PMM)to achieve 1.21 V from the two-port connection.The rectifier has the ability to exploit both frequency domain through the multi-band operation with good impedance bandwidth and a spatial domain using dual-port configuration.Hence,it is a potential candidate for various applications in radio frequency energy harvesting(RFEH)system.
文摘针对传统背靠背三电平变换器成本高、体积大、结构复杂等问题,文中提出一种新型双端口三电平变换器拓扑,通过器件复用方式减少开关器件数量,优化系统结构。首先,详细分析所提新型拓扑的工作原理,给出单相桥臂的6种有效开关状态、电流流通路径及对应双端口输出电平,并对各开关器件的电压应力进行分析。其次,研究并设计一种适用于该新型拓扑的载波层叠脉宽调制策略,加入直流偏移量以避免调制波重合产生的影响。然后,进一步分析该策略在同频与异频工作模式下的调制度范围、相角差约束等关键问题,给出各工作模式下直流偏移量选取原则及两端口调制度约束范围。最后,基于DSP-FPGA-Typhoon HIL 402实验平台对不同工作模式进行验证。实验结果表明,在实现所提新型拓扑双端口电压电流稳定输出的前提下,加入直流偏移量的载波层叠脉宽调制策略使得变换器输出的电能质量良好,谐波含量低。
基金This work was supported by the Hainan Provincial Natural Science Foundation of China(620RC560,2019RC096,620RC562)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)+2 种基金the National Natural Science Foundation of China(62162021,82160345,61802092)the key research and development program of Hainan province(ZDYF2020199,ZDYF2021GXJS017)the key science and technology plan project of Haikou(2011-016).
文摘As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.