A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressu...A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.展开更多
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content...With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples ...Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples were taken from the Qazzaz metamorphic core complex to estimate the finite strain for felsic and mafic minerals.These samples included gneisses rocks,monzogranite,and metavolcano-sedimentary rocks for both the Thalbah and Bayda groups.Using the Rf/j and Fry methods,the axial ratios(XZ)range about 2.20 to 7.10 and 1.90 to 9.10,respectively.For various rock units,the strain measurements show moderate to highly deformation.Most of the observed samples show shallow WNW dipping along a N to WNW trend of finite strain(X).The short axes(Z)based to be subvertical foliation related with a subhorizontal foliation.The results demonstrate that contacts generated at semi-brittle to ductile deformation and that the strain of magnitude has the same value for different lithologic units.It concluded that nappe generation in orogens results from pure shear deformation.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulati...Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.展开更多
Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be...Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems ...Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)p...Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)products from the same brand.Based on high-throughput sequencing research results,11 phyla and 54 genera were identified as dominant microbiota.Pseudomonas,Streptococcus,and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties.Moreover,principal component analysis(PCA)and multivariate analyses were used to examine the quality characteristics,including 11 physicochemical parameters,10 fatty acids,and 2 enzyme activities,in normal and quality deteriorated UHT milk.We found that the abundance of Pseudomonas increased in quality deteriorated milk(WY)and showed a significant positive correlation with heat-resistant protease content.Acinetobacter in quality deteriorated milk(QY)also considerably contributed to the content of heat-resistant lipase,which resulted in spoilage deterioration of UHT milk.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
基金supported by the Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization(Grant Nos.CNWK202304 and CNNK202315)the Introduction of TalentResearch Start-Up Funding Projects ofYingkou Institute of Technology(Grant No.YJRC202107).
文摘A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
基金supported by the National Natural Science Foundation of China(No.51827901)the National Natural Science Foundation of China(No.52225403)+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams of China(No.2019ZT08G315)the Sichuan Science and Technology Program of China(No.2023NSFSC0780).
文摘With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金supported and funded by the Researchers Supporting Project(Project No.RSPD2024R781),King Saud University,Riyadh,Saudi Arabia。
文摘Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples were taken from the Qazzaz metamorphic core complex to estimate the finite strain for felsic and mafic minerals.These samples included gneisses rocks,monzogranite,and metavolcano-sedimentary rocks for both the Thalbah and Bayda groups.Using the Rf/j and Fry methods,the axial ratios(XZ)range about 2.20 to 7.10 and 1.90 to 9.10,respectively.For various rock units,the strain measurements show moderate to highly deformation.Most of the observed samples show shallow WNW dipping along a N to WNW trend of finite strain(X).The short axes(Z)based to be subvertical foliation related with a subhorizontal foliation.The results demonstrate that contacts generated at semi-brittle to ductile deformation and that the strain of magnitude has the same value for different lithologic units.It concluded that nappe generation in orogens results from pure shear deformation.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金the Iranian Nanotechnology Development Committee for their financial supportUniversity of Kashan for supporting this work by Grant No. 1223097/10the micro and nanomechanics laboratory by Grant No. 14022023/5
文摘Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.
基金Project supported by the National Natural Science Foundation of China (Gant No.11872323)。
文摘Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
基金funding from the Ministry of Education,Culture,Research,and Technology,Indonesia,through the PDKN Research Grant with Contract No.041/E5/PG.02.00.PL/2023.
文摘Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金supported by the National Natural Science Foundation of China(32172279,31871831)Shenyang Science and Technology Innovation Platform Project(21-103-0-14,21-104-0-28)Shenyang City Youth Science and Technology Innovation Leading Talent Project(RC200495).
文摘Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)products from the same brand.Based on high-throughput sequencing research results,11 phyla and 54 genera were identified as dominant microbiota.Pseudomonas,Streptococcus,and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties.Moreover,principal component analysis(PCA)and multivariate analyses were used to examine the quality characteristics,including 11 physicochemical parameters,10 fatty acids,and 2 enzyme activities,in normal and quality deteriorated UHT milk.We found that the abundance of Pseudomonas increased in quality deteriorated milk(WY)and showed a significant positive correlation with heat-resistant protease content.Acinetobacter in quality deteriorated milk(QY)also considerably contributed to the content of heat-resistant lipase,which resulted in spoilage deterioration of UHT milk.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.