The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The...The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.展开更多
A spike response model(SRM)based on the spikes generator circuit(SGC)of adaptive fuzzy spiking neurons(AFSNs)is developed.The SRM is simulated in MatlabTM environment.The proposed model is applied to a configuration o...A spike response model(SRM)based on the spikes generator circuit(SGC)of adaptive fuzzy spiking neurons(AFSNs)is developed.The SRM is simulated in MatlabTM environment.The proposed model is applied to a configuration of a fuzzy exclusive or(fuzzy XOR)operator,as an illustrative example.A description of the comparison of AFSNs with other similar methods is given.The novel method of the AFSNs is used to determine the value of the weights or parameters of the fuzzy XOR,first with dynamic weights or self-tuning parameters that adapt continuously,then with fixed weights obtained after training,finally with fixed weights and a dynamic gain or self-tuning gain for a fine adjustment of amplitude.展开更多
A low power mapping algorithm for technology independent AND/XOR circuits is proposed. In this algorithm, the average power of the static mixed-polarity Reed-Muller (MPRM) circuits is minimized by generating a two-i...A low power mapping algorithm for technology independent AND/XOR circuits is proposed. In this algorithm, the average power of the static mixed-polarity Reed-Muller (MPRM) circuits is minimized by generating a two-input gates circuit to optimize the switching active of nodes, and the power and area of MPRM circuits are estimated by using gates from a given library. On the basis of obtaining an optimal power MPRM circuit, the best mixed-polarity is found by combining an exhaustive searching method with polarity conversion algorithms. Our experiments over 18 benchmark circuits show that compared to the power optimization for fixed-polarity Reed-Muller circuits and AND/OR circuits, power saving is up to 44.22% and 60.09%, and area saving is up to 14.13% and 32.72%, respectively.展开更多
基金the National Key Research and Development Program of China under Grant No.2018YFB2200403the National Natural Science Foundation of China under Grant Nos.11734001,91950204,92150302.
文摘The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
文摘A spike response model(SRM)based on the spikes generator circuit(SGC)of adaptive fuzzy spiking neurons(AFSNs)is developed.The SRM is simulated in MatlabTM environment.The proposed model is applied to a configuration of a fuzzy exclusive or(fuzzy XOR)operator,as an illustrative example.A description of the comparison of AFSNs with other similar methods is given.The novel method of the AFSNs is used to determine the value of the weights or parameters of the fuzzy XOR,first with dynamic weights or self-tuning parameters that adapt continuously,then with fixed weights obtained after training,finally with fixed weights and a dynamic gain or self-tuning gain for a fine adjustment of amplitude.
基金Project supported by the National Natural Science Foundation of China(Nos.61076032,60776022)the Postdoctoral Science Foundation of China(No.20090461355)the Postdoctoral Research Projects of Zhejiang Province,China,and the Natural Science Foundation of Zhejiang Province,China(No.Y1101078)
文摘A low power mapping algorithm for technology independent AND/XOR circuits is proposed. In this algorithm, the average power of the static mixed-polarity Reed-Muller (MPRM) circuits is minimized by generating a two-input gates circuit to optimize the switching active of nodes, and the power and area of MPRM circuits are estimated by using gates from a given library. On the basis of obtaining an optimal power MPRM circuit, the best mixed-polarity is found by combining an exhaustive searching method with polarity conversion algorithms. Our experiments over 18 benchmark circuits show that compared to the power optimization for fixed-polarity Reed-Muller circuits and AND/OR circuits, power saving is up to 44.22% and 60.09%, and area saving is up to 14.13% and 32.72%, respectively.