The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,meas...Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,measurements from multiple directions are typically required in current scanning techniques.Specifically,the plane structured light can be applied to measure one area of a part at a time,with an additional algorithm required to merge the collected data of each area.Alternatively,the line structured light sensor integrated on CNC machines or CMMs could also realize multi-view measurement.However,the system needs to be repeatedly calibrated at each new direction.This paper presents a flexible scanning method by integrating laser line sensors with articulated arm coordinate measuring machines(AACMM).Since the output of the laser line sensor is 2D raw data in the laser plane,our system model introduces an explicit transformation from the 2D sensor coordinate frame to the 3D base coordinate frame of the AACMM(i.e.,the translation and rotation the of the 2D sensor coordinate in the sixth coordinate system of AACMM).To solve the model,the“conjugate pairs”are proposed and identified by measuring a fixed point(e.g.,a sphere center).Moreover,a search algorithm is adopted to find the optimal solution,which noticeably boosts the model accuracy.The experimental results show that the error of the system is about 0.2 mm,which is caused by the error of the AACMM,the sensor error and the calibration error.By measuring a complicated part,the proposed system is proved to be flexible and facilitate,with the ability to measure a part expediently from any necessary direction.Furthermore,the proposed calibration method can also be used for robot hand-eye relationship calibration.展开更多
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati...Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
基金National Natural Science Foundation of China(Grant No.42076192).
文摘Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,measurements from multiple directions are typically required in current scanning techniques.Specifically,the plane structured light can be applied to measure one area of a part at a time,with an additional algorithm required to merge the collected data of each area.Alternatively,the line structured light sensor integrated on CNC machines or CMMs could also realize multi-view measurement.However,the system needs to be repeatedly calibrated at each new direction.This paper presents a flexible scanning method by integrating laser line sensors with articulated arm coordinate measuring machines(AACMM).Since the output of the laser line sensor is 2D raw data in the laser plane,our system model introduces an explicit transformation from the 2D sensor coordinate frame to the 3D base coordinate frame of the AACMM(i.e.,the translation and rotation the of the 2D sensor coordinate in the sixth coordinate system of AACMM).To solve the model,the“conjugate pairs”are proposed and identified by measuring a fixed point(e.g.,a sphere center).Moreover,a search algorithm is adopted to find the optimal solution,which noticeably boosts the model accuracy.The experimental results show that the error of the system is about 0.2 mm,which is caused by the error of the AACMM,the sensor error and the calibration error.By measuring a complicated part,the proposed system is proved to be flexible and facilitate,with the ability to measure a part expediently from any necessary direction.Furthermore,the proposed calibration method can also be used for robot hand-eye relationship calibration.
基金the National Natural Science Foundation of China (Nos. 10672040 and10372022)the Natural Science Foundation of Fujian Province of China (No. E0410008)
文摘Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.