In order to study the relationship between the non-spherical atmospheric charged particles and satellite-ground quantum links attenuation. The relationship among the particle concentration, equivalent radius, charge d...In order to study the relationship between the non-spherical atmospheric charged particles and satellite-ground quantum links attenuation. The relationship among the particle concentration, equivalent radius, charge density of the charged particle, the attenuation coefficient and entanglement of the satellite-ground quantum link can be established first according to the extinction cross section and spectral distribution function of the non-spherical atmospheric charged particles. The quantitative relationship between atmospheric visibility and communication fidelity of satellite-ground quantum link were analyzed then. Simulation results show that the ellipsoid, Chebyshev atmospheric charged particle influences on attenuation of the satellite-ground quantum link increase progressively. When the equivalent particle radius is 0.2 gm and the particle concentration is 50 μg/m^3, the attenuation coefficient and entanglement of the satellite-ground quantum link is 9.21 dB/km, 11.46 dB/km and 0.453, 0.421 respectively; When the atmospheric visibility reduces from 8 km to 2 kin, the communication fidelity of satellite-ground quantum link decreases from 0.52 to 0.08. It is shown that the non-spherical atmospheric charged particles and atmospheric visibility influence greatly on the performance of the satellite-ground quantum link communication system. Therefore, it is necessary to adjust the parameters of the quantum-satellite communication system according to the visibility values of the atmosphere and the shapes of the charged particles in the atmosphere to improve reliability of the satellite-ground quantum link.展开更多
In the satellite-to-ground high-speed data transmission link,there are signal self-interference problems of symbols in the co-channel,as well as between orthogonal and polarized channels.A multichannel adaptive filter...In the satellite-to-ground high-speed data transmission link,there are signal self-interference problems of symbols in the co-channel,as well as between orthogonal and polarized channels.A multichannel adaptive filter is designed by constructing a multichannel Wiener-Hopf equation,and the influence of five channel nonideal factors is suppressed to improve the BER performance.Experiments show that this method is effective to suppress the signal selfinterference,and the BER floor is optimized from 1E3 to 1E-7.展开更多
The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always be...The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always been a difficult problem.In addition,the random nature of the atmosphere will affect the satellite-ground laser link,which increases the difficulty of the acquisition and stable tracking for the laser link.Thus,taking into account the above challenges for satellite-ground laser communication,an acquisition and tracking scheme of using both beacon beam and signal beam was designed for the Laser Communication Terminal(LCT)of Shijian 20 satellite.In-orbit test results indicated that under the condition of moderate atmospheric turbulence(atmospheric coherence length r0≈3 cm),the process of acquisition and tracking for the satellite-ground laser link can be completed within 1 s after the initial pointing between the LCT and Optical Ground Station(OGS)is performed,and the tracking error was less than 1μrad(3σ).In addition,the laser link can be re-established quickly once being interrupted by unsteady atmospheric turbulence,and can be maintained for a long time under moderate twurbulence conditions,which lays a foundation for future application of satellite-ground laser communication.展开更多
基金supported by the National Natural Science Foundation of China(61172071,61201194)the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province,China(2015KW-013)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(16JK1711)
文摘In order to study the relationship between the non-spherical atmospheric charged particles and satellite-ground quantum links attenuation. The relationship among the particle concentration, equivalent radius, charge density of the charged particle, the attenuation coefficient and entanglement of the satellite-ground quantum link can be established first according to the extinction cross section and spectral distribution function of the non-spherical atmospheric charged particles. The quantitative relationship between atmospheric visibility and communication fidelity of satellite-ground quantum link were analyzed then. Simulation results show that the ellipsoid, Chebyshev atmospheric charged particle influences on attenuation of the satellite-ground quantum link increase progressively. When the equivalent particle radius is 0.2 gm and the particle concentration is 50 μg/m^3, the attenuation coefficient and entanglement of the satellite-ground quantum link is 9.21 dB/km, 11.46 dB/km and 0.453, 0.421 respectively; When the atmospheric visibility reduces from 8 km to 2 kin, the communication fidelity of satellite-ground quantum link decreases from 0.52 to 0.08. It is shown that the non-spherical atmospheric charged particles and atmospheric visibility influence greatly on the performance of the satellite-ground quantum link communication system. Therefore, it is necessary to adjust the parameters of the quantum-satellite communication system according to the visibility values of the atmosphere and the shapes of the charged particles in the atmosphere to improve reliability of the satellite-ground quantum link.
基金supported by the Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province under Grant YQ2020F001the National Key Research and Development Program of China under Grant 2021YFB2900500the Fundamental Research Funds for the Central Universities under Grant FRFCU 9803503821
文摘In the satellite-to-ground high-speed data transmission link,there are signal self-interference problems of symbols in the co-channel,as well as between orthogonal and polarized channels.A multichannel adaptive filter is designed by constructing a multichannel Wiener-Hopf equation,and the influence of five channel nonideal factors is suppressed to improve the BER performance.Experiments show that this method is effective to suppress the signal selfinterference,and the BER floor is optimized from 1E3 to 1E-7.
文摘The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always been a difficult problem.In addition,the random nature of the atmosphere will affect the satellite-ground laser link,which increases the difficulty of the acquisition and stable tracking for the laser link.Thus,taking into account the above challenges for satellite-ground laser communication,an acquisition and tracking scheme of using both beacon beam and signal beam was designed for the Laser Communication Terminal(LCT)of Shijian 20 satellite.In-orbit test results indicated that under the condition of moderate atmospheric turbulence(atmospheric coherence length r0≈3 cm),the process of acquisition and tracking for the satellite-ground laser link can be completed within 1 s after the initial pointing between the LCT and Optical Ground Station(OGS)is performed,and the tracking error was less than 1μrad(3σ).In addition,the laser link can be re-established quickly once being interrupted by unsteady atmospheric turbulence,and can be maintained for a long time under moderate twurbulence conditions,which lays a foundation for future application of satellite-ground laser communication.