The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social ...Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.展开更多
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour...Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.展开更多
In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. Ther...In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco...A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.展开更多
A novel indicator called price-citation was proposed.Based on the company integrated patent database of China listed companies of common stocks(A-shares)with the stock price and the stock return rate data,more than tw...A novel indicator called price-citation was proposed.Based on the company integrated patent database of China listed companies of common stocks(A-shares)with the stock price and the stock return rate data,more than two thousand of A-shares from 2017 to 2020 were selected.The effect of the traditional patent forward citation and the price-citation for discriminating the stock return rate was thoroughly analyzed via ANOVA.The A-shares of forward citation counts above the average showed higher stock return rate means than the A-shares having patents but receiving no forward citations.The price-citation,combining both the financial and patent attributes,defined as the multiplication of the current stock price and the currently receiving forward citation count,showed its excellence in discriminating the stock return rate.The A-shares of higher price-citation showed significantly higher stock return rate means while the A-shares of lower price-citation showed significantly lowest stock return rate means.The price-citation effect had not been changed by COVID-19 though COVID-19 affected the social and economic environment to a considerable extent in 2020.展开更多
Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex...Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.展开更多
Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge d...Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.展开更多
Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal proce...Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal processing.Recently,sev-eral memristor-based in-memory computing systems have been proposed to enhance the efficiency of sparse coding remark-ably.However,the variations and low precision of the devices will deteriorate the dictionary,causing inevitable degradation in the accuracy and reliability of the application.In this work,a digital-analog hybrid memristive sparse coding system is pro-posed utilizing a multilevel Pt/Al_(2)O_(3)/AlO_(x)/W memristor,which employs the forward stagewise regression algorithm:The approxi-mate cosine distance calculation is conducted in the analog part to speed up the computation,followed by high-precision coeffi-cient updates performed in the digital portion.We determine that four states of the aforementioned memristor are sufficient for the processing of natural images.Furthermore,through dynamic adjustment of the mapping ratio,the precision require-ment for the digit-to-analog converters can be reduced to 4 bits.Compared to the previous system,our system achieves higher image reconstruction quality of the 38 dB peak-signal-to-noise ratio.Moreover,in the context of image inpainting,images containing 50%missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error.展开更多
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com...This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.展开更多
Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to differen...Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
China is playing a major role in Uganda’s oil industry development Although oil in Uganda was first discovered in 1925 during the colonial era,it was not until recently that its exploration and plans to exploit the b...China is playing a major role in Uganda’s oil industry development Although oil in Uganda was first discovered in 1925 during the colonial era,it was not until recently that its exploration and plans to exploit the black gold commercially began in earnest.In November 2022,the country’s Minister of Energy and Mineral Development Ruth Nankabirwa Ssentamu said at a conference in Abu Dhabi,“I hope that by April 2025,we shall see the first oil.”展开更多
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金supported by the NationalNatural Science Foundation of China(61972136)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T201410,T2020017)+1 种基金the Natural Science Foundation of Xiaogan City(XGKJ2022010095,XGKJ2022010094)the Science and Technology Research Project of Education Department of Hubei Province(No.Q20222704).
文摘Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.
基金This work is supported by National Natural Science Foundation of China(Nos.U23B20151 and 52171253).
文摘Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.
文摘In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金supported by the Na-tional Natural Science Foundation of China(Nos.62175105,61875086)Fundamental Research Funds for the Cen-tral Universities of China(No.ILB240041A24)。
文摘A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.
基金support from Ministry of Science and Technology,Taiwan,R.O.C.under Grant No.MOST 109-2410-H-011-021-MY3.
文摘A novel indicator called price-citation was proposed.Based on the company integrated patent database of China listed companies of common stocks(A-shares)with the stock price and the stock return rate data,more than two thousand of A-shares from 2017 to 2020 were selected.The effect of the traditional patent forward citation and the price-citation for discriminating the stock return rate was thoroughly analyzed via ANOVA.The A-shares of forward citation counts above the average showed higher stock return rate means than the A-shares having patents but receiving no forward citations.The price-citation,combining both the financial and patent attributes,defined as the multiplication of the current stock price and the currently receiving forward citation count,showed its excellence in discriminating the stock return rate.The A-shares of higher price-citation showed significantly higher stock return rate means while the A-shares of lower price-citation showed significantly lowest stock return rate means.The price-citation effect had not been changed by COVID-19 though COVID-19 affected the social and economic environment to a considerable extent in 2020.
基金Supported by Key Research and Development Project of Guangxi Pr ovince(No.AB21196028).
文摘Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.
文摘Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.
基金This work was supported by the National Key R&D Program of China(Grant No.2019YFB2205100)in part by Hubei Key Laboratory of Advanced Memories.
文摘Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal processing.Recently,sev-eral memristor-based in-memory computing systems have been proposed to enhance the efficiency of sparse coding remark-ably.However,the variations and low precision of the devices will deteriorate the dictionary,causing inevitable degradation in the accuracy and reliability of the application.In this work,a digital-analog hybrid memristive sparse coding system is pro-posed utilizing a multilevel Pt/Al_(2)O_(3)/AlO_(x)/W memristor,which employs the forward stagewise regression algorithm:The approxi-mate cosine distance calculation is conducted in the analog part to speed up the computation,followed by high-precision coeffi-cient updates performed in the digital portion.We determine that four states of the aforementioned memristor are sufficient for the processing of natural images.Furthermore,through dynamic adjustment of the mapping ratio,the precision require-ment for the digit-to-analog converters can be reduced to 4 bits.Compared to the previous system,our system achieves higher image reconstruction quality of the 38 dB peak-signal-to-noise ratio.Moreover,in the context of image inpainting,images containing 50%missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error.
基金This work was supported by China Postdoctoral Science Foundation(No.2022M723391)the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)+1 种基金the Central Guiding Local Science and Technology Development Fund Project(No.YDZJSX2021B021)Shanxi Province Basic Research Plan General Project(No.202203021221294).
文摘This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.
文摘Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
文摘China is playing a major role in Uganda’s oil industry development Although oil in Uganda was first discovered in 1925 during the colonial era,it was not until recently that its exploration and plans to exploit the black gold commercially began in earnest.In November 2022,the country’s Minister of Energy and Mineral Development Ruth Nankabirwa Ssentamu said at a conference in Abu Dhabi,“I hope that by April 2025,we shall see the first oil.”