Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynami...Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.展开更多
针对湿法冶金过程中传统线性搅拌工艺导致的多相介质混合不均,混合过程能耗高等问题,提出了变速机械搅拌耦合蒸汽喷吹强化混合工艺,增加了搅拌釜内部的混沌流区域,打破原有的混合隔离区,从而提高搅拌反应釜内部的整体混合效率。通过数...针对湿法冶金过程中传统线性搅拌工艺导致的多相介质混合不均,混合过程能耗高等问题,提出了变速机械搅拌耦合蒸汽喷吹强化混合工艺,增加了搅拌釜内部的混沌流区域,打破原有的混合隔离区,从而提高搅拌反应釜内部的整体混合效率。通过数值模拟的方法,构建volume of fraction(VOF)多相流模型和Lee蒸汽冷凝相变模型,对多相混合过程进行量化。结果表明,变速机械搅拌耦合蒸汽喷吹条件下搅拌流场合速度提高了38.04%,湍动能强度提升了40.01%。展开更多
基金Key Project in National Science & Technology Pillar Program,China(No.2007BAE41B04)
文摘Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.
基金the National Key R&D Program (No. 2022YFC2904900)the National Natural Science Foundation of China (No. U1902221)+2 种基金the Construction of High-level Talents of Kunming University of Science and Technology,China (No. 20210172)the Leading Talents of Industrial Technology in Ten Thousand Talents Plan of Yunnan Province,Chinathe Scientist Studio of Yunnan Province,China。
文摘针对湿法冶金过程中传统线性搅拌工艺导致的多相介质混合不均,混合过程能耗高等问题,提出了变速机械搅拌耦合蒸汽喷吹强化混合工艺,增加了搅拌釜内部的混沌流区域,打破原有的混合隔离区,从而提高搅拌反应釜内部的整体混合效率。通过数值模拟的方法,构建volume of fraction(VOF)多相流模型和Lee蒸汽冷凝相变模型,对多相混合过程进行量化。结果表明,变速机械搅拌耦合蒸汽喷吹条件下搅拌流场合速度提高了38.04%,湍动能强度提升了40.01%。