In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite...In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.展开更多
Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine a...Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex. Using pSV2-β-galactosidase as a reporter gene, it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) andhuman malignant melanoma cell lines (A375) in vitro. In vivo experiments, exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO, human malignant melanoma A375 and human hepatoma graft in nude mice. This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice. These results are correlated with theGene delivery system targeting VEGF receptors relevant receptors (flt-1, flk-1/KDR) expression on the targeted cells and tissues.展开更多
The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and po...The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.展开更多
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense fo...Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.展开更多
A novel bifunctional glycolipid which carded a cluster of thiogalactosides as the hepatocyte targeting ligand for gene delivery was prepared. Hexa-antennary alcohol 1 was used as the core scaffold to attach a choleste...A novel bifunctional glycolipid which carded a cluster of thiogalactosides as the hepatocyte targeting ligand for gene delivery was prepared. Hexa-antennary alcohol 1 was used as the core scaffold to attach a cholesterol molecule by a poly(ethylene glycol) chain, while its remaining branches were linked with five acetylgalactosides, which would be deacetylated later to produce pentaantennary galactoside. Liposome containing the galactoside showed high affinity and transfection activity in hepatoma cells HepG2.展开更多
Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prep...Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prepare chitosan nanoparticles (CSNPs) as gene vectors by ionic cross-linking with tripolyphosphate (TPP). CSNPs were characterized in terms of particle size, zeta potential, and polydispersity index (PDI) using a Zetasizer, and morphology was evaluated by transmission electron microscopy (TEM). Furthermore, the cytotoxicity and biocompatibility of CSNPs were correspondingly examined by a 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and histological examination. Agarose gel electrophoresis and UV spectrophotometric methods were performed to measure the loading capacity. The cell transfection efficiency of CSNPs loaded with plasmids or siRNA was analyzed by fluorescence microscopy or laser scanning confocal microscopy. The results showed that CSNPs were prepared successfully by the ionic gelation method, which had a smaller partcticle size (100 nm-200 nm), stable dispersibility, low cytotoxicity, good tissue-biocompatibility, and high gene-loading efficiency. These CSNPs could transfer the plasmids or siRNA to cells. However, CSNPs might have a much higher transfection efficiency for siRNAs than for plasmids, which implies that CSNPs might be a safer and more efficient vector for delivering siRNAs rather than plasmids.展开更多
Cationic nanoparticles (NPs) for gene delivery were successfully prepared by assembling earboxylation poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), L-ct-Phosphatidylethanolamine (DOPE) and...Cationic nanoparticles (NPs) for gene delivery were successfully prepared by assembling earboxylation poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), L-ct-Phosphatidylethanolamine (DOPE) and octadecyl quaternized carboxymethyl chitosans (OQCMC). Lactoferrin (Lf) was selected as a targeting ligand conjugated to PLGA via bifunctional PEG, yielding PLGA-PEG-Lf/DOPE NPs to be used for gene vectors. Fourier transform infrared spectroscopy (FTIR), UV and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the synthesis of the vectors. The characteristics of the vectors loaded heine oxygenase (HO-1) gene were evaluated by transmission electron microscope (TEM), particle size analyser and fluorescent microscopy. The experimental results showed that the obtained vectors were spherical in shape with average particle size of 142.2 nm and zeta potentials of +16.4 inV. The vectors could protect the loaded gene from the degradation by nuclease. For 293T cells, there is high transfection efficiency of the vectors similar to liposome-2000. It can be concluded that the established cationic PLGA-PEG-Lf/DOPE NPs have potential gene delivery ability for gene therapy.展开更多
Objective To deliver the naked genes into cells through the bioeffects of cell membrane porous produced by low-frequency ultrasound (US) and to investigate the safety by determining the threshold of cell damage and me...Objective To deliver the naked genes into cells through the bioeffects of cell membrane porous produced by low-frequency ultrasound (US) and to investigate the safety by determining the threshold of cell damage and membrane permeability. Methods The suspension of red cells from chickens, rabbits, rats, and S180 cells was exposed to calibrated US field with different parameters in still and flowing state. Laser scanning confocal microscopy, fluorescent microscopy, scanning electron microscopy, flow cytometry and spectrophotometry were used to examine cell morphology, membrane permeability, enzymes, free radicals, naked gene expression efficiency, threshold of cell damage and cell viability. Results The plasmid of green fluorescent protein (GFP) as a reporter gene was delivered into S180 cells under optimal conditions without cell damage and cytotoxicity. The transfection rate was (35.83±2.53)% (n=6) in viable cells, and the cell viability was (90.17±1.47)% (n=6). Also, malondialdehyde, hydroxyl free radical, alkaline phosphatase, and acid phosphatase showed a S-shaped growth model (r=0.98±0.01) in response to the permeability change and alteration of cell morphology. The constant E of energy accumulation in US delivery at 90% cell viability was an optimal control factor, and at 80% cell viability was the damage threshold. Conclusion US under optimal conditions is a versatile gene therapy tool. The intensity of GFP expression in US group has a higher fluorescent peak than that in AVV-GFP group and control group (P<0.001). The optimal gene uptakes, expression of gene and safety depend on E, which can be applied to control gene delivery efficiency in combination with other parameters. The results are helpful for development of a novel clinical naked gene therapeutic system and non-hyperthermia cancer therapeutic system.展开更多
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective deli...Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells.To be excited,the development of ionizable drug delivery systems(IDDSs)has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019(COVID-19)in 2021.Compared with conventional cationic gene vectors,IDDSs can decrease the toxicity of carriers to cell membranes,and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures.Despite the progress,there remain necessary requirements for designing more efficient IDDSs for precise gene therapy.Herein,we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms.The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of plasmid DNA(pDNA)and four kinds of RNA.In particular,organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity.We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future,and indicate ideas for developing next generation gene vectors.展开更多
Antisense oligodeoxynucleotide(ASODN)can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing,in turn,plays antitumor therapeutic roles.In the s...Antisense oligodeoxynucleotide(ASODN)can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing,in turn,plays antitumor therapeutic roles.In the study,a novel HIF-1αASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA.The physicochemical properties of nanocomposite were characterized using TEM,FTIR,DLS and zeta potentials.The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170–192 nm,and according to the agarose gel retardation assay,the loading amount of ASODN accounted for 166.7 mg/g.The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells.The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL.The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite.In vitro exploration of molecular mechanism indicated that the nanocomposite could inhibit m RNA expression and HIF-1αprotein translation at different levels.In vivo optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue.In vivo antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%.These results manifested that the GEL-DGL-FA-ASODNDCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA.展开更多
To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Me...To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Methods: Antisense survivin oligonucleotide was anchored onto polyamidoamine dendrimer grafted carbon nanotubes to form dendrimer-CNT-asODN complex and the complex was characterized by Zeta potential, AFM, TEM, and 1% agarose gel electrophoresis analysis. Dendrimer-CNT-asODN complexes were added into the medium and incubated with MCF-7 cells. MTT method was used to detect the effects of asODN and dendrimer-CNT-asODN on the growth of MCF-7 cells. TEM was used to observe the distribution of dendrimer-CNT-asODN complex within MCF-7 cells. Results: Successful synthesis of dendrimer-CNT-asODN complexes was proved by TEM, AFM and agarose gel electrophoresis. TEM showed that the complexes were located in the cytoplasm, endosome, and lysosome within MCF-7 cells. When dendrimer-CNT-asODN (1.0 μmol/L) and asODN (1.0 μmol/L) were used for 120 h incubation, the inhibitory rates of MCF-7 cells were (28.22±3.5)% for dendrimer-CNT-asODN complex group, (9.23±0.56)% for only asODN group, and (3.44±0.25)% for dendrimer-CNT group. Dendrimer-CNT-asODN complex at 3.0 μmol/L inhibited MCF-7 cells by (30.30±10.62)%, and the inhibitory effects were in a time- and concentration-dependent manner. Conclusion: Dendrimer-CNT nanoparticles may serve as a gene delivery vector with high efficiency, which can bring foreign gene into cancer cells, inhibiting cancer cell proliferation and markedly enhancing the cancer therapy effects.展开更多
Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targe...Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targeting ability. Methods: The synthetic polypeptides CR16 for binding FGF receptors was conjugated to PEI and the characters of the polypeptides in-cluding DNA condensing and particle size were determined. Enhanced efficiency and the targeting specificity of the synthesized vector were investigated in vitro and in vivo. Results: The polypeptides were successfully coupled to PEI. The new vectors PEI-CR16 could efficiently condense pDNA into particles with around 200 nm diameter. The PEI-CR16/pDNA polyplexes showed significantly greater transgene activity than PEI/pDNA in FGF receptors positive tumor cells in vitro and in vivo gene transfer, while no difference was observed in FGF receptors negative tumor cells. The enhanced transfection efficiency of PEI-CR16 could be blocked by excess free polypeptides. Conclusion: The synthesized vector could improve the efficiency of gene transfer and targeting specificity in FGF receptors positive cells. The vector had good prospect for use in cancer gene therapy.展开更多
Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic ...Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.展开更多
Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complex...Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complexes with different contents of PEI(5%,10%,20% and 40% relative to phosphatidyl choline in reaction system) were prepared.The physicochemical properties of Lipo/PEI complexes,as well as the influences of PEI content on the storage stability,cytotoxicity and transfection efficiency were investigated.The transmission electron microscopy(TEM) images showed that Lipo/PEI complexes had smaller size compared to pure Lipo.The zeta potential values decreased with the increasing content of PEI.After storaged for 3 months at 4 ℃,obvious aggregation was observed when the addition of PEI content was up to 20%.In vitro cytotoxicity assay showed that Lipo/PEI complexes had decreased cytotoxicity over pure PEI,while the cytotoxicity was enhanced as the PEI content increased.Importantly,the luciferase activity assay and confocal microscope observation revealed that Lipo/PEI complexes prepared with the lowest amount of PEI(Lipo/PEI-5%)possessed the highest transfection efficiency.Thus,these results suggest that feeding the appropriate content of PEI in Lipo/PEI complexes allows them to be excellent vehicle for gene delivery.展开更多
Previously,we developed a gene delivery system using Bubble liposomes(perfluoropropane gas-entrapping liposomes;BLs)and ultrasound(US)[1].The combination of BLs and US can deliver plasmid DNA into the cytoplasm via th...Previously,we developed a gene delivery system using Bubble liposomes(perfluoropropane gas-entrapping liposomes;BLs)and ultrasound(US)[1].The combination of BLs and US can deliver plasmid DNA into the cytoplasm via the formation of transient membrane pores by cavitation.To enhance the efficiency of gene delivery,it is important to induce the cavitation of BLs at the vicinity of cells.In brief,cell-binding BLs would be useful for gene delivery to induce the cavitation on the cell membrane.展开更多
Pulsed electric field has been used widely as a nonviral approach to improving gene delivery in basic and translational research[1-2].The technique has been called electrotransfection(ET),electroporation,electrogene t...Pulsed electric field has been used widely as a nonviral approach to improving gene delivery in basic and translational research[1-2].The technique has been called electrotransfection(ET),electroporation,electrogene transfer,and gene electroinjection in the literature [1,3].It has a great potential to improve clinical treatment of diseases through delivery of vaccines and therapeutic genes,genome and epigenome editing,and generation of human induced pluripotent stem cells for tissue engineering[1-3].During ET,extracellular transport of plasmid DNA(pDNA)relies on electrophoresis,which is critical for applications in vivo.However,mechanisms of intracellular transport remain to be understood.The lack of understanding has hindered the translation of ET technology to the clinic.It is well known that pulsed electric field can generate transient hydrophilic pores in the plasma membrane(i.e.,electroporation)that permit membrane-impermeant molecules to enter cells.Although the pores have yet to be visualized directly under a microscope,the electric field-induced membrane permeabilization has been demonstrated through experimental measurements of electrical conductance of synthetic lipid membranes and plasma membranes,direct observation of fluorescent markers crossing the membranes facing both cathode and anode,and numerical simulations of the membrane permeabilization[1,3].Results from the simulations have predicted that the cutoff size of the pores is on the order of a few hundred nanometers,and the lifetime of the pores that are larger than 100 nm is on the order of 10 msec.Although these data provide a solid evidence of the membrane permeabilization,recent studies have demonstrated that the generation of the pores is insufficient for ET[1,4].The reasons are as follows.First,the lifetime of the pores is several orders of magnitude shorter than the time scale for pDNA uptake,which is on the order of 10 min.Second,complex formation between pDNA and plasma membrane is a necessary condition for successful gene transfer.Third,inhibition of clathrin mediated endocytosis or Rac-1 dependent micropinocytosis can reduce the amount of pDNA internalized by cells [1].Finally,we demonstrate that few pDNA molecules can be observed in the cytosol that are not associated with the intracellular vesicles[5],suggesting that pDNA uptake is mediated by endocytosis.In addition to the internalization,ET requires the pDNA in the cytoplasm to reach the nucleus.To understand mechanisms of intracellular trafficking of pDNA,we have examined time-dependent pDNA distributions in cells,quantitatively determined percentages of pDNA molecules associated with different endocytic compartments using transmission electron microscopy(TEM),and investigated different approaches to facilitate cytoplasmic transport and nuclear entry of pDNA.Our data have shown that electrotransfected pDNA is located in different vesicular ultrastructures at or near the plasma membrane at10 min post application of electric pulses[5].In the hard-to-transfect cells(e.g.,4T1),pDNA penetration from the cell surface is less active,and the total number of vesicular structures associated with pDNA is low,compared to those in the easyto-transfect cells(e.g.,COS7).Our data have also shown that macropinocytosis is the most common pathway shared by all types of cells.To investigate how improve pDNA transport in cells,we have photochemically treated cells to non-specifically induce pDNA escape from intracellular vesicles,or blocked endosome and autophagic vacuole maturation through treatment of cells with Bafilomycin Al,an inhibitor of vacuolar H+ATPase.Our data demonstrate that both treatments can lead to reduction of ET efficiency although the treatment for inducing endosomal escape can enhance poly-L-lysine mediated gene delivery.These data suggest that the vesicles play an important role in protecting the naked pDNA during intracellular trafficking.The nuclear envelope is another major barrier to ET.To facilitate the nuclear entry,we have examined three different approaches.One is to synchronize the nuclear envelope breakdown(NEBD)prior to ET;the second approach is to pre-treat cells with a nuclear pore dilating agent(i.e.,trans-1,2-cyclohexanediol);and the third one is to incorporate a nuclear targeting sequence(NTS)(i.e.,SV40)into the pDNA.Our data have shown that the synchronization of the NEBD can significantly improve the ET efficiency without compromising the cell viability.The nuclear pore dilation can improve the ET as well but the dilating agent is cytotoxic.The incorporation of NTS into pDNA can improve the gene delivery efficiency but the improvement is cell-type dependent,suggesting that the NTS has to be screened and optimized for the cells of interest.In summary,the transient pores in the plasma membrane induced by the electric pulses will enable cellular uptake of membrane-impermeant molecules up to the size of small proteins.Larger molecules(e.g.,pDNA)have to be internalized via endocytic processes triggered by the pulsed electric field.Within the cells,pDNA transport is mediated by vesicles and can be blocked by non-specific escape from vesicles or inhibition of vesicle maturation.The nuclear entry of pDNA can be enhanced,without compromising cell viability,through the use of the NTS or the synchronization of the NEBD.展开更多
Gene therapy is applied into cardiovascular diseases,cancer and diseases that are due to genomic causes.Viral vectors are efficient carriers of genes for transduction,but some problems have become evident.Delivery vec...Gene therapy is applied into cardiovascular diseases,cancer and diseases that are due to genomic causes.Viral vectors are efficient carriers of genes for transduction,but some problems have become evident.Delivery vectors that are highly potent in terms of gene transduction efficiency should also be safe and easy to apply.Non-viral vectors have recently received focus as gene carriers,but their transduction efficiency is very low and not suitable for in vivo gene delivery.In addition,it is important to develop tissue-specific or selective gene delivery system to avoid side effects in gene therapy.展开更多
Objective To develop an alternative method for assessment of gene delivery systems in vivo.Methods Mouse primary spleen lymphocytes were genetically modified in vitro by a retroviral vector harboring a Gaussia lucifer...Objective To develop an alternative method for assessment of gene delivery systems in vivo.Methods Mouse primary spleen lymphocytes were genetically modified in vitro by a retroviral vector harboring a Gaussia luciferase(Gluc) expression cassette.After implantation of these cells into recipient mice,the expression of Gluc was detected in whole blood or plasma collected.Results As little as 10 μL whole blood drawn from the recipient mice could guarantee prompt reading of Gluc activity with a luminometer.And the reading was found in good correlation with the number of genetically modified spleen lymphocytes implanted to the mice.Conclusions Gluc may be useful as an in vivo reporter for gene therapy researches,and Gluc blood assay could provide an alternative method for assessment of gene delivery systems in vivo.展开更多
An efficient cell suspension culture system has been initiated using callus obtained from mature seeds of the Chinese Japonica variety Eryi 105 as a source. Over the last 12 months, using the ″Nottingham Method″, pr...An efficient cell suspension culture system has been initiated using callus obtained from mature seeds of the Chinese Japonica variety Eryi 105 as a source. Over the last 12 months, using the ″Nottingham Method″, protoplasts have been produced from these cell suspensions, and via the PEG method of transformation. 45 regenerated plants were obtained from DNA-treated protoplasts selected by 80μg/ml G418. The research of molecular analysis on those plantlets is being carried on by Plant Genetic Manipulation Group, Department of Life Science, University of Nottingham, U.K.展开更多
Design and synthesis of a carbamate-linked cationic lipid DDCTMA (N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide)? as gene delivery carriers was described in this work. The transfection efficie...Design and synthesis of a carbamate-linked cationic lipid DDCTMA (N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide)? as gene delivery carriers was described in this work. The transfection efficiency of cationic liposome increased dramatically with the increase in the content of DOPE. In addition, the transfection efficiency of some of cationic lipoplexes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and DOTAP. The carbamate-linked cationic lipid DDCTMA/DOPE may be a promising gene carrier that has high transfection efficiency as well as low cytotoxicity.展开更多
基金Project(2013SK2024)supported by the Key Projects in Social Development Pillar Program of Hunan Province,ChinaProject(20130162120094)supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP),Ministry of Education,ChinaProjects(81071869,51305464)supported by the National Natural Science Foundation of China
文摘In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.
文摘Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex. Using pSV2-β-galactosidase as a reporter gene, it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) andhuman malignant melanoma cell lines (A375) in vitro. In vivo experiments, exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO, human malignant melanoma A375 and human hepatoma graft in nude mice. This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice. These results are correlated with theGene delivery system targeting VEGF receptors relevant receptors (flt-1, flk-1/KDR) expression on the targeted cells and tissues.
基金a grant from the National Natural Sciences Foundation of China (No. 30670548).
文摘The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.
基金the financial support from the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52103196 and 52073060)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
基金supported by the National Natural Science Foundation of China(No.30672537)Ministry of Education of PR China(No.20050610085).
文摘A novel bifunctional glycolipid which carded a cluster of thiogalactosides as the hepatocyte targeting ligand for gene delivery was prepared. Hexa-antennary alcohol 1 was used as the core scaffold to attach a cholesterol molecule by a poly(ethylene glycol) chain, while its remaining branches were linked with five acetylgalactosides, which would be deacetylated later to produce pentaantennary galactoside. Liposome containing the galactoside showed high affinity and transfection activity in hepatoma cells HepG2.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2014HP011)Qingdao Young Scientist Applied Basic Research Fund(No.15-9-1-51-jch)+1 种基金Youth Foundation of The Affiliated Hospital of Qingdao University(No.2417)the National Natural Science Foundation of China(No.81401899)
文摘Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prepare chitosan nanoparticles (CSNPs) as gene vectors by ionic cross-linking with tripolyphosphate (TPP). CSNPs were characterized in terms of particle size, zeta potential, and polydispersity index (PDI) using a Zetasizer, and morphology was evaluated by transmission electron microscopy (TEM). Furthermore, the cytotoxicity and biocompatibility of CSNPs were correspondingly examined by a 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and histological examination. Agarose gel electrophoresis and UV spectrophotometric methods were performed to measure the loading capacity. The cell transfection efficiency of CSNPs loaded with plasmids or siRNA was analyzed by fluorescence microscopy or laser scanning confocal microscopy. The results showed that CSNPs were prepared successfully by the ionic gelation method, which had a smaller partcticle size (100 nm-200 nm), stable dispersibility, low cytotoxicity, good tissue-biocompatibility, and high gene-loading efficiency. These CSNPs could transfer the plasmids or siRNA to cells. However, CSNPs might have a much higher transfection efficiency for siRNAs than for plasmids, which implies that CSNPs might be a safer and more efficient vector for delivering siRNAs rather than plasmids.
基金Funded by the Natural Science Foundation of China for Innovative Research Group(50921002)the National Natural Science Foundation of China (30800446,31100762)+3 种基金the Education Departmental Natural Science Research Funds of Jiangsu Provincial Higher School of China (09KJB310016)the Science and Technology Planning Project of Xuzhou (xzzd1054)the Special Foundation of President of Xuzhou Medical College (2010KJZ27)the Priority Acedemic Program Development of Jiangsu Higher Education Institutions
文摘Cationic nanoparticles (NPs) for gene delivery were successfully prepared by assembling earboxylation poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), L-ct-Phosphatidylethanolamine (DOPE) and octadecyl quaternized carboxymethyl chitosans (OQCMC). Lactoferrin (Lf) was selected as a targeting ligand conjugated to PLGA via bifunctional PEG, yielding PLGA-PEG-Lf/DOPE NPs to be used for gene vectors. Fourier transform infrared spectroscopy (FTIR), UV and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the synthesis of the vectors. The characteristics of the vectors loaded heine oxygenase (HO-1) gene were evaluated by transmission electron microscope (TEM), particle size analyser and fluorescent microscopy. The experimental results showed that the obtained vectors were spherical in shape with average particle size of 142.2 nm and zeta potentials of +16.4 inV. The vectors could protect the loaded gene from the degradation by nuclease. For 293T cells, there is high transfection efficiency of the vectors similar to liposome-2000. It can be concluded that the established cationic PLGA-PEG-Lf/DOPE NPs have potential gene delivery ability for gene therapy.
文摘Objective To deliver the naked genes into cells through the bioeffects of cell membrane porous produced by low-frequency ultrasound (US) and to investigate the safety by determining the threshold of cell damage and membrane permeability. Methods The suspension of red cells from chickens, rabbits, rats, and S180 cells was exposed to calibrated US field with different parameters in still and flowing state. Laser scanning confocal microscopy, fluorescent microscopy, scanning electron microscopy, flow cytometry and spectrophotometry were used to examine cell morphology, membrane permeability, enzymes, free radicals, naked gene expression efficiency, threshold of cell damage and cell viability. Results The plasmid of green fluorescent protein (GFP) as a reporter gene was delivered into S180 cells under optimal conditions without cell damage and cytotoxicity. The transfection rate was (35.83±2.53)% (n=6) in viable cells, and the cell viability was (90.17±1.47)% (n=6). Also, malondialdehyde, hydroxyl free radical, alkaline phosphatase, and acid phosphatase showed a S-shaped growth model (r=0.98±0.01) in response to the permeability change and alteration of cell morphology. The constant E of energy accumulation in US delivery at 90% cell viability was an optimal control factor, and at 80% cell viability was the damage threshold. Conclusion US under optimal conditions is a versatile gene therapy tool. The intensity of GFP expression in US group has a higher fluorescent peak than that in AVV-GFP group and control group (P<0.001). The optimal gene uptakes, expression of gene and safety depend on E, which can be applied to control gene delivery efficiency in combination with other parameters. The results are helpful for development of a novel clinical naked gene therapeutic system and non-hyperthermia cancer therapeutic system.
文摘Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells.To be excited,the development of ionizable drug delivery systems(IDDSs)has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019(COVID-19)in 2021.Compared with conventional cationic gene vectors,IDDSs can decrease the toxicity of carriers to cell membranes,and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures.Despite the progress,there remain necessary requirements for designing more efficient IDDSs for precise gene therapy.Herein,we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms.The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of plasmid DNA(pDNA)and four kinds of RNA.In particular,organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity.We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future,and indicate ideas for developing next generation gene vectors.
基金supported by the National Natural Science Foundation of China Fund(No 81541060)Science and Technology Projects from the Science Technology and Innovation Committee of Shenzhen Municipality(grant no.JCJY20170818110340383 and JCJY20170307163529489)。
文摘Antisense oligodeoxynucleotide(ASODN)can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing,in turn,plays antitumor therapeutic roles.In the study,a novel HIF-1αASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA.The physicochemical properties of nanocomposite were characterized using TEM,FTIR,DLS and zeta potentials.The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170–192 nm,and according to the agarose gel retardation assay,the loading amount of ASODN accounted for 166.7 mg/g.The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells.The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL.The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite.In vitro exploration of molecular mechanism indicated that the nanocomposite could inhibit m RNA expression and HIF-1αprotein translation at different levels.In vivo optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue.In vivo antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%.These results manifested that the GEL-DGL-FA-ASODNDCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA.
基金This project was supported by the National Natural Science Foundation of China (No. 30471599)the National 973 project (2005CB724300-G)the Bio-X DNA Computer Consortium (03DZ14025).
文摘To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Methods: Antisense survivin oligonucleotide was anchored onto polyamidoamine dendrimer grafted carbon nanotubes to form dendrimer-CNT-asODN complex and the complex was characterized by Zeta potential, AFM, TEM, and 1% agarose gel electrophoresis analysis. Dendrimer-CNT-asODN complexes were added into the medium and incubated with MCF-7 cells. MTT method was used to detect the effects of asODN and dendrimer-CNT-asODN on the growth of MCF-7 cells. TEM was used to observe the distribution of dendrimer-CNT-asODN complex within MCF-7 cells. Results: Successful synthesis of dendrimer-CNT-asODN complexes was proved by TEM, AFM and agarose gel electrophoresis. TEM showed that the complexes were located in the cytoplasm, endosome, and lysosome within MCF-7 cells. When dendrimer-CNT-asODN (1.0 μmol/L) and asODN (1.0 μmol/L) were used for 120 h incubation, the inhibitory rates of MCF-7 cells were (28.22±3.5)% for dendrimer-CNT-asODN complex group, (9.23±0.56)% for only asODN group, and (3.44±0.25)% for dendrimer-CNT group. Dendrimer-CNT-asODN complex at 3.0 μmol/L inhibited MCF-7 cells by (30.30±10.62)%, and the inhibitory effects were in a time- and concentration-dependent manner. Conclusion: Dendrimer-CNT nanoparticles may serve as a gene delivery vector with high efficiency, which can bring foreign gene into cancer cells, inhibiting cancer cell proliferation and markedly enhancing the cancer therapy effects.
基金Project (Nos. 2001AA217071 and 2003AA216041) supported by the Hi-Tech Research and Development Program (863) of China
文摘Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targeting ability. Methods: The synthetic polypeptides CR16 for binding FGF receptors was conjugated to PEI and the characters of the polypeptides in-cluding DNA condensing and particle size were determined. Enhanced efficiency and the targeting specificity of the synthesized vector were investigated in vitro and in vivo. Results: The polypeptides were successfully coupled to PEI. The new vectors PEI-CR16 could efficiently condense pDNA into particles with around 200 nm diameter. The PEI-CR16/pDNA polyplexes showed significantly greater transgene activity than PEI/pDNA in FGF receptors positive tumor cells in vitro and in vivo gene transfer, while no difference was observed in FGF receptors negative tumor cells. The enhanced transfection efficiency of PEI-CR16 could be blocked by excess free polypeptides. Conclusion: The synthesized vector could improve the efficiency of gene transfer and targeting specificity in FGF receptors positive cells. The vector had good prospect for use in cancer gene therapy.
文摘Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
基金National Natural Science Foundations of China(Nos.31271028,31570984)Innovation Program of Shanghai Municipal Education Commission,China(No.13ZZ051)+2 种基金International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality,China(No.15540723400)Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LK1416)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complexes with different contents of PEI(5%,10%,20% and 40% relative to phosphatidyl choline in reaction system) were prepared.The physicochemical properties of Lipo/PEI complexes,as well as the influences of PEI content on the storage stability,cytotoxicity and transfection efficiency were investigated.The transmission electron microscopy(TEM) images showed that Lipo/PEI complexes had smaller size compared to pure Lipo.The zeta potential values decreased with the increasing content of PEI.After storaged for 3 months at 4 ℃,obvious aggregation was observed when the addition of PEI content was up to 20%.In vitro cytotoxicity assay showed that Lipo/PEI complexes had decreased cytotoxicity over pure PEI,while the cytotoxicity was enhanced as the PEI content increased.Importantly,the luciferase activity assay and confocal microscope observation revealed that Lipo/PEI complexes prepared with the lowest amount of PEI(Lipo/PEI-5%)possessed the highest transfection efficiency.Thus,these results suggest that feeding the appropriate content of PEI in Lipo/PEI complexes allows them to be excellent vehicle for gene delivery.
文摘Previously,we developed a gene delivery system using Bubble liposomes(perfluoropropane gas-entrapping liposomes;BLs)and ultrasound(US)[1].The combination of BLs and US can deliver plasmid DNA into the cytoplasm via the formation of transient membrane pores by cavitation.To enhance the efficiency of gene delivery,it is important to induce the cavitation of BLs at the vicinity of cells.In brief,cell-binding BLs would be useful for gene delivery to induce the cavitation on the cell membrane.
基金supported by grants from National Institutes of Health ( GM098520 and GM130830)National Science Foundation ( CBET-1264186)
文摘Pulsed electric field has been used widely as a nonviral approach to improving gene delivery in basic and translational research[1-2].The technique has been called electrotransfection(ET),electroporation,electrogene transfer,and gene electroinjection in the literature [1,3].It has a great potential to improve clinical treatment of diseases through delivery of vaccines and therapeutic genes,genome and epigenome editing,and generation of human induced pluripotent stem cells for tissue engineering[1-3].During ET,extracellular transport of plasmid DNA(pDNA)relies on electrophoresis,which is critical for applications in vivo.However,mechanisms of intracellular transport remain to be understood.The lack of understanding has hindered the translation of ET technology to the clinic.It is well known that pulsed electric field can generate transient hydrophilic pores in the plasma membrane(i.e.,electroporation)that permit membrane-impermeant molecules to enter cells.Although the pores have yet to be visualized directly under a microscope,the electric field-induced membrane permeabilization has been demonstrated through experimental measurements of electrical conductance of synthetic lipid membranes and plasma membranes,direct observation of fluorescent markers crossing the membranes facing both cathode and anode,and numerical simulations of the membrane permeabilization[1,3].Results from the simulations have predicted that the cutoff size of the pores is on the order of a few hundred nanometers,and the lifetime of the pores that are larger than 100 nm is on the order of 10 msec.Although these data provide a solid evidence of the membrane permeabilization,recent studies have demonstrated that the generation of the pores is insufficient for ET[1,4].The reasons are as follows.First,the lifetime of the pores is several orders of magnitude shorter than the time scale for pDNA uptake,which is on the order of 10 min.Second,complex formation between pDNA and plasma membrane is a necessary condition for successful gene transfer.Third,inhibition of clathrin mediated endocytosis or Rac-1 dependent micropinocytosis can reduce the amount of pDNA internalized by cells [1].Finally,we demonstrate that few pDNA molecules can be observed in the cytosol that are not associated with the intracellular vesicles[5],suggesting that pDNA uptake is mediated by endocytosis.In addition to the internalization,ET requires the pDNA in the cytoplasm to reach the nucleus.To understand mechanisms of intracellular trafficking of pDNA,we have examined time-dependent pDNA distributions in cells,quantitatively determined percentages of pDNA molecules associated with different endocytic compartments using transmission electron microscopy(TEM),and investigated different approaches to facilitate cytoplasmic transport and nuclear entry of pDNA.Our data have shown that electrotransfected pDNA is located in different vesicular ultrastructures at or near the plasma membrane at10 min post application of electric pulses[5].In the hard-to-transfect cells(e.g.,4T1),pDNA penetration from the cell surface is less active,and the total number of vesicular structures associated with pDNA is low,compared to those in the easyto-transfect cells(e.g.,COS7).Our data have also shown that macropinocytosis is the most common pathway shared by all types of cells.To investigate how improve pDNA transport in cells,we have photochemically treated cells to non-specifically induce pDNA escape from intracellular vesicles,or blocked endosome and autophagic vacuole maturation through treatment of cells with Bafilomycin Al,an inhibitor of vacuolar H+ATPase.Our data demonstrate that both treatments can lead to reduction of ET efficiency although the treatment for inducing endosomal escape can enhance poly-L-lysine mediated gene delivery.These data suggest that the vesicles play an important role in protecting the naked pDNA during intracellular trafficking.The nuclear envelope is another major barrier to ET.To facilitate the nuclear entry,we have examined three different approaches.One is to synchronize the nuclear envelope breakdown(NEBD)prior to ET;the second approach is to pre-treat cells with a nuclear pore dilating agent(i.e.,trans-1,2-cyclohexanediol);and the third one is to incorporate a nuclear targeting sequence(NTS)(i.e.,SV40)into the pDNA.Our data have shown that the synchronization of the NEBD can significantly improve the ET efficiency without compromising the cell viability.The nuclear pore dilation can improve the ET as well but the dilating agent is cytotoxic.The incorporation of NTS into pDNA can improve the gene delivery efficiency but the improvement is cell-type dependent,suggesting that the NTS has to be screened and optimized for the cells of interest.In summary,the transient pores in the plasma membrane induced by the electric pulses will enable cellular uptake of membrane-impermeant molecules up to the size of small proteins.Larger molecules(e.g.,pDNA)have to be internalized via endocytic processes triggered by the pulsed electric field.Within the cells,pDNA transport is mediated by vesicles and can be blocked by non-specific escape from vesicles or inhibition of vesicle maturation.The nuclear entry of pDNA can be enhanced,without compromising cell viability,through the use of the NTS or the synchronization of the NEBD.
文摘Gene therapy is applied into cardiovascular diseases,cancer and diseases that are due to genomic causes.Viral vectors are efficient carriers of genes for transduction,but some problems have become evident.Delivery vectors that are highly potent in terms of gene transduction efficiency should also be safe and easy to apply.Non-viral vectors have recently received focus as gene carriers,but their transduction efficiency is very low and not suitable for in vivo gene delivery.In addition,it is important to develop tissue-specific or selective gene delivery system to avoid side effects in gene therapy.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA021206,2007AA021106)
文摘Objective To develop an alternative method for assessment of gene delivery systems in vivo.Methods Mouse primary spleen lymphocytes were genetically modified in vitro by a retroviral vector harboring a Gaussia luciferase(Gluc) expression cassette.After implantation of these cells into recipient mice,the expression of Gluc was detected in whole blood or plasma collected.Results As little as 10 μL whole blood drawn from the recipient mice could guarantee prompt reading of Gluc activity with a luminometer.And the reading was found in good correlation with the number of genetically modified spleen lymphocytes implanted to the mice.Conclusions Gluc may be useful as an in vivo reporter for gene therapy researches,and Gluc blood assay could provide an alternative method for assessment of gene delivery systems in vivo.
文摘An efficient cell suspension culture system has been initiated using callus obtained from mature seeds of the Chinese Japonica variety Eryi 105 as a source. Over the last 12 months, using the ″Nottingham Method″, protoplasts have been produced from these cell suspensions, and via the PEG method of transformation. 45 regenerated plants were obtained from DNA-treated protoplasts selected by 80μg/ml G418. The research of molecular analysis on those plantlets is being carried on by Plant Genetic Manipulation Group, Department of Life Science, University of Nottingham, U.K.
文摘Design and synthesis of a carbamate-linked cationic lipid DDCTMA (N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide)? as gene delivery carriers was described in this work. The transfection efficiency of cationic liposome increased dramatically with the increase in the content of DOPE. In addition, the transfection efficiency of some of cationic lipoplexes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and DOTAP. The carbamate-linked cationic lipid DDCTMA/DOPE may be a promising gene carrier that has high transfection efficiency as well as low cytotoxicity.