Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numericall...Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque(STT) and voltage-controlled strain gradient(VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire(LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system.展开更多
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t...Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.展开更多
Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of ...Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of titanium dioxide nanoparticles embedded in acrylic resin with a high RI for ultraviolet(UV)-imprint lithography.The hybrid film exhibits a tunable RI of up to 1.67(589 nm)after being cured by UV light,while maintaining both a high transparency of over 98%in the visible light range and a low haze of less than 0.05%.The precision machining of optical microstructures can be imprinted easily and efficiently using the hybrid resin,which acts as a light guide plate(LGP)to guide the light from the side to the top in order to conserve the energy of the display device.These preliminary studies based on both laboratory and commercial experiments pave the way for exploiting the unparalleled optical properties of nanocomposite resins and promoting their industrial application.展开更多
A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded on...A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.展开更多
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl...The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.展开更多
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac...To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability i...We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).展开更多
Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.How...Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.展开更多
The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actu...The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actual,oil-contaminated seawater remains a critical challenge,because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks,resulting in undermined evaporation rate and conversion efficiency.Herein,we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable,highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination.The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios,whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures.The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent,isotropic wall apertures together with underwater superhydrophobicity,while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous,large-area evaporation channels.The modularized solar evaporator delivers the best evaporation rate(1.48 kg m-2h-1)and conversion efficiency(92.08%)among all MXene-based desalination materials on oil-contaminated seawater.展开更多
We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We...We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We employ particle-in-cell(PIC)simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma.This overlap results in the formation of a transverse standing wave,leading to a spatially periodic high-density modulation known as a plasma grating.The electron density peak within the grating can reach several times the background plasma density.The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons,resulting in Coulomb expansion and acceleration of the electrons.As a result,some electrons expand into vacuum,forming a periodic narrow EBC with an individual beam width in the nanoscale range.To further explore the formation of the nanoscale EBC,we conduct additional PIC simulations to study the dependence on various laser parameters.Overall,our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.展开更多
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io...The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).展开更多
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent...Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.展开更多
Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider a...Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission.An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture,relying on dual temporal cavity solitons with agile repetition rate.In the experiment,the triangular optical chirp microwave waveforms with bandwidth above0.45 GHz(ranging from 1.45 GHz to 1.9 GHz)are obtained,and the chirp rate reaches 0.9 GHz/ms.The reconfigurability is also demonstrated by adjusting the control signal.This all-optical approach provides a technical basis for compact,multi-band reconfigurable microwave photonics transmission and reception systems.展开更多
Localized surface plasmon resonance(LSPR) has caused extensive concern and achieved widespread applications in optoelectronics. However, the weak coupling of plasmons and excitons in a nanometal/semiconductor system r...Localized surface plasmon resonance(LSPR) has caused extensive concern and achieved widespread applications in optoelectronics. However, the weak coupling of plasmons and excitons in a nanometal/semiconductor system remains to be investigated via energy transfer. Herein, bandgap tunable perovskite films were synthesized to adjust the emission peaks,for further coupling with stable localized surface plasmons from gold nanoparticles. The degree of mismatch, using steadystate and transient photoluminescence(PL), was investigated systematically in two different cases of gold nanoparticles that were in direct contacting and insulated. The results demonstrated the process of tuning emission coupled to LSPR via wavelength-dependent photoluminescence intensity in the samples with an insulating spacer. In the direct contact case,the decreased radiative decay rate involves rapid plasmon resonance energy transfer to the perovskite semiconductor and non-radiative energy transfer to metal nanoparticles in the near-field range.展开更多
Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively cont...Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.展开更多
In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essentia...In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.展开更多
This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source...This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.展开更多
Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater o...Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.展开更多
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51902300, 11972333, and 11902316)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY21F010011, LZ19A020001, and LZ23A020002)the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant Nos. 2021YW02 and 2022YW88)。
文摘Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque(STT) and voltage-controlled strain gradient(VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire(LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718802 and 2018YFA0209002)the National Natural Science Foundation of China(Grant Nos.62274086,62288101,61971464,62101243,and 11961141002)+3 种基金the Excellent Young Scholar Program of Jiangsu Province,China(Grant Nos.BK20200008 and BK20200060)the Outstanding Postdoctoral Program of Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universitiesthe Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
基金supported by the National Natural Science Foundation of China(22288102 and 22278027).
文摘Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of titanium dioxide nanoparticles embedded in acrylic resin with a high RI for ultraviolet(UV)-imprint lithography.The hybrid film exhibits a tunable RI of up to 1.67(589 nm)after being cured by UV light,while maintaining both a high transparency of over 98%in the visible light range and a low haze of less than 0.05%.The precision machining of optical microstructures can be imprinted easily and efficiently using the hybrid resin,which acts as a light guide plate(LGP)to guide the light from the side to the top in order to conserve the energy of the display device.These preliminary studies based on both laboratory and commercial experiments pave the way for exploiting the unparalleled optical properties of nanocomposite resins and promoting their industrial application.
文摘A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.
基金supported by the National Key R&D Program of China(2023YFB4603504)the International Science&Technology Innovation Cooperation Project of Sichuan Province(2024YFHZ0232)+2 种基金the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University(2020SCUNG203)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019).
文摘The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.
基金supported by the National Natural Science Foundation of China(No.52250287)the Outstanding Youth Science Fund Project of Shaanxi Province of China(No.2024JC-JCQN-49)。
文摘To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
文摘We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).
基金supported by the National Key Research and Development Program of China(2021YFB3701603)National Science Foundation of China(51973030,52103075)+6 种基金Shanghai Rising-Star Program(20QA1400100)Science and Technology Commission of Shanghai Municipality(20JC1414900)China Postdoctoral Science Foundation(2022M710664,2022T150111)China Postdoctoral Science Foundation(2022M710663)the Fundamental Research Funds for the Central Universities“DHU”Distinguished Young Professor Program(LZB2021001)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
基金support from the National Natural Science Foundation of China(G.Nos.52173055,21961132024,and 51925302)the Ministry of Science and Technology of China(G.No.2021YFE0105100)+3 种基金the Textile Vision Basic Research Program(No.J202201)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(G.No.21130750100)the Fundamental Research Funds for the Central Universitiesthe DHU Distinguished Young Professor Program(G.No.LZA2020001)。
文摘The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actual,oil-contaminated seawater remains a critical challenge,because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks,resulting in undermined evaporation rate and conversion efficiency.Herein,we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable,highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination.The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios,whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures.The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent,isotropic wall apertures together with underwater superhydrophobicity,while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous,large-area evaporation channels.The modularized solar evaporator delivers the best evaporation rate(1.48 kg m-2h-1)and conversion efficiency(92.08%)among all MXene-based desalination materials on oil-contaminated seawater.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12174410,11991072,11991074,12225411,and 12105353)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR060)the State Key Laboratory Program of the Chinese Ministry of Science and Technology,and the CAS Youth Innovation Promotion Association(Grant Nos.Y201952 and 2022242).
文摘We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We employ particle-in-cell(PIC)simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma.This overlap results in the formation of a transverse standing wave,leading to a spatially periodic high-density modulation known as a plasma grating.The electron density peak within the grating can reach several times the background plasma density.The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons,resulting in Coulomb expansion and acceleration of the electrons.As a result,some electrons expand into vacuum,forming a periodic narrow EBC with an individual beam width in the nanoscale range.To further explore the formation of the nanoscale EBC,we conduct additional PIC simulations to study the dependence on various laser parameters.Overall,our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials+2 种基金Southwest University of Science and Technology(Grant Nos.21fksy24 and 18ZD320304)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)。
文摘The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).
基金support from the National Natural Science Foundation of China(61975046)。
文摘Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.
基金the National Natural Science Foundation of China(Grant Nos.61675009 and 61325021)the Key Program of Beijing Municipal Natural Science Foundation(Grant No.KZ201910005006)。
文摘Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission.An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture,relying on dual temporal cavity solitons with agile repetition rate.In the experiment,the triangular optical chirp microwave waveforms with bandwidth above0.45 GHz(ranging from 1.45 GHz to 1.9 GHz)are obtained,and the chirp rate reaches 0.9 GHz/ms.The reconfigurability is also demonstrated by adjusting the control signal.This all-optical approach provides a technical basis for compact,multi-band reconfigurable microwave photonics transmission and reception systems.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0700503 and 2018YFA0209101)the National Natural Science Foundation of China (Grant Nos. 61821002, 11734005, 62075041, and 61704024)。
文摘Localized surface plasmon resonance(LSPR) has caused extensive concern and achieved widespread applications in optoelectronics. However, the weak coupling of plasmons and excitons in a nanometal/semiconductor system remains to be investigated via energy transfer. Herein, bandgap tunable perovskite films were synthesized to adjust the emission peaks,for further coupling with stable localized surface plasmons from gold nanoparticles. The degree of mismatch, using steadystate and transient photoluminescence(PL), was investigated systematically in two different cases of gold nanoparticles that were in direct contacting and insulated. The results demonstrated the process of tuning emission coupled to LSPR via wavelength-dependent photoluminescence intensity in the samples with an insulating spacer. In the direct contact case,the decreased radiative decay rate involves rapid plasmon resonance energy transfer to the perovskite semiconductor and non-radiative energy transfer to metal nanoparticles in the near-field range.
基金supported by the National Natural Science Foundation of China(52003203 and 52075422)the Rapid Manufacturing Engineering Technology Research Center of Shaanxi Province(2017HBGC-06)the Youth Innovation Team of Shaanxi Universities,and the K.C.Wong Education Foundation.
文摘Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419)。
文摘In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and 60278001) and Tianjin Applied Fundamental Research Project, China (07JCZDJC05900).
文摘This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.
基金the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210593)the Foundation of Jiangsu Provincial Double Innovation Doctor Program (Grant No. 30644)+2 种基金the National Natural Science Foundation of China (Grant No. 62204127)State Key Laboratory of Luminescence and Applications (Grant No. SKLA 202104)open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)。
文摘Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.