Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. ...Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.Mathematics subject classification: 65N30, 90C46, 65N50, 49K20, 49N15, 65K10.展开更多
This paper develops a duality theory for connected cochain DG algebras,with particular emphasis on the non-commutative aspects.One of the main items is a dualizing DG module which induces a duality between the derived...This paper develops a duality theory for connected cochain DG algebras,with particular emphasis on the non-commutative aspects.One of the main items is a dualizing DG module which induces a duality between the derived categories of DG left-modules and DG right-modules with finitely generated cohomology.As an application,it is proved that if the canonical module k=A/A≥1 has a semi-free resolution where the cohomological degree of the generators is bounded above,then the same is true for each DG module with finitely generated cohomology.展开更多
文摘Adaptive finite element methods for optimization problems for second order linear el- liptic partial differential equations subject to pointwise constraints on the l2-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.Mathematics subject classification: 65N30, 90C46, 65N50, 49K20, 49N15, 65K10.
文摘This paper develops a duality theory for connected cochain DG algebras,with particular emphasis on the non-commutative aspects.One of the main items is a dualizing DG module which induces a duality between the derived categories of DG left-modules and DG right-modules with finitely generated cohomology.As an application,it is proved that if the canonical module k=A/A≥1 has a semi-free resolution where the cohomological degree of the generators is bounded above,then the same is true for each DG module with finitely generated cohomology.