A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics...A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.展开更多
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented...Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.展开更多
Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in t...Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in the Tongbai-Dabie complexes. However, it cannot explain the most deformations in the shear zones. The northwest-southeast shear zones are developed around or wrapped the Tongbai-Dabie complexes. They play an important role for the interpretation of the tectonic evolution of the Tongbai-Dabie orogenic belt. By a systematically observation and description of the geometry and kinematics of these shear zones, we found that the shear zones to the north dip NE and have a uniform sinistral shear sense, the shear zone to the south dips SW and has a uniform dextral shear sense, and the shear zones at the core are sub-horizontal and have a uniform top-to-NW sense of shear. Combining with the comparison of previous and our geochronological studies, we interpret these associations as indicating that these shear zones were originally a single, more flat-lying and sub- horizontal shear zone with a uniform top-to-NW shear sense before the folding-doming of the Tongbai- Dabie complexes and suggest that the Tongbai-Dabie orogenic belt experienced a uniform top-to-NW orogen-paraUel extension in the ductile lithosphere before the widespread magmatism in the Cretaceous.展开更多
Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, ...Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, a global shear stress pattern including shear stress values and directions of P and T principal axis was obatained. The distribution of ambient shear stress values in the globe is: the highest in intraplate followed by subduction zone, and the lowest in oceanic ridge. The horizontal directions of the maximum principal stresses we got are coincident very well with the result of Zoback (1989). The detail analysis of the stress state in Tonga region shows that: The subduction slab bends down in shallow by press and bends up in deep because of the resistance from deeper part. Between them, the slab is in an equilibrum state. After analysizing the global stress distribution, we got the result that: the plate is driven by a drag force from under its bottom, the plate motion results in its extensional state in oceanic ridge and compressive state in subduction zone.展开更多
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collec...On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.展开更多
The Xiaotian–Mozitan Shear Zone(XMSZ)is the boundary of the Dabie High-grade Metamorphic Complex(DHMC)and the North Huaiyang Tectonic Belt.It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermo...The Xiaotian–Mozitan Shear Zone(XMSZ)is the boundary of the Dabie High-grade Metamorphic Complex(DHMC)and the North Huaiyang Tectonic Belt.It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermometers applied to mineral parageneses in mylonites of the shear zone give a temperature range of 623–691°C for the predeformation and 515–568°C for the syndeformation,respectively,which indicates a retrograde process of evolution.A few groups of zircon U-Pb ages were obtained from undeformed granitic veins and different types of deformed rocks in the zone.Zircons from the felsic ultramylonites are all magmatic,producing a weighted mean 206Pb/238U age of 754±8.1 Ma,which indicates the time of magmatic activities caused by rifting in the Neoproterozoic.Zircons from the granitic veins,cutting into the mylonites,are also of magmatic origin,producing a weighted mean 206 Pb/238 U age of 130±2.5 Ma,which represents the time of regional magmatic activity in the Cretaceous.Zircons from the mylonitic gneisses are of anatectic-metamorphic origins and are characterized by a core-mantle interior texture,which yielded several populations of ages including the Neoproterozoic ages with a weighted mean 206 Pb/238 U age of 762±18 Ma,similar to that of the felsic ultramylonites and the Early Cretaceous ages with a weighted mean 206Pb/238U age of 143±1.8 Ma,indicating the anatectic metamorphism in the Dabie Orogenic Belt(DOB).Based on integrated analysis of the structure,thermal conditions of ductile deformation and the contact relations of the dated rocks,the activation time of the Xiaotian–Mozitan Shear Zone is constrained between~143 Ma and 130 Ma,during which the DOB was undergoing a transition in tectonic regime from compression to extension.Therefore,the deformation and evolution of this shear zone plays an instrumental role in fully understanding this process.This research also inclines us to the interpretation of it as an extensional detachment,with regard to the tectonic properties of the shear zone.It may also be part of a continental scale extension in the background of the North China Block’s cratonic destruction,dominated by the subduction and roll-back of the Paleo-Pacific plate,but more detailed work is needed in order to unravel its complicated development.展开更多
The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)th...The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.展开更多
A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in the...A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.展开更多
A series of tectonites were formed in the shear zone array of the Tongbai--Dabie Orogenic Belt, including mylonites, blastomylonites, semi--plastic mylonites and foliated cataclasitesas a result of multiple strain loc...A series of tectonites were formed in the shear zone array of the Tongbai--Dabie Orogenic Belt, including mylonites, blastomylonites, semi--plastic mylonites and foliated cataclasitesas a result of multiple strain localization, strain softening and deformation partitioning.展开更多
The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South...The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.展开更多
This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids f...This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.展开更多
Deformation characteristics of the dextral Dashankou ductile shear zone , parallel to the Tongbo-Dabie Orogenic Belt and regional stretching lineation patterns within the blueschist belt in Northern Hubei , China , ar...Deformation characteristics of the dextral Dashankou ductile shear zone , parallel to the Tongbo-Dabie Orogenic Belt and regional stretching lineation patterns within the blueschist belt in Northern Hubei , China , are examined at various scales , respectively . The new data , combined with those obtained in the Wudangshan area , indicate a transpressive deformation involving a WNW directed nearly horizontal shearing accompanied by shortening across the orogenic belt . A kinematic model is proposed for development of the deformation within the Tongboshan segment . Based on these findings it can be seen that the convergence and collision between the North China Craton and the Yangtze Craton may locally be oblique during the Proterozoic Jinningian Orogeny . This oblique collision is probably related to a certain extent to the shapes of the older craton margins .展开更多
基金National Natural Science Foundation of China(41930972,52239006,41975001)。
文摘A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.
文摘Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.
基金funded by the National Natural Science Foundation of China(Grants.41272222 to C.Z.Song and 41472166 to S.Lin)China Geological Survey(Grants.1212011121116 to S.Lin)a China Scholarship Council scholarship to H.Liu
文摘Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in the Tongbai-Dabie complexes. However, it cannot explain the most deformations in the shear zones. The northwest-southeast shear zones are developed around or wrapped the Tongbai-Dabie complexes. They play an important role for the interpretation of the tectonic evolution of the Tongbai-Dabie orogenic belt. By a systematically observation and description of the geometry and kinematics of these shear zones, we found that the shear zones to the north dip NE and have a uniform sinistral shear sense, the shear zone to the south dips SW and has a uniform dextral shear sense, and the shear zones at the core are sub-horizontal and have a uniform top-to-NW sense of shear. Combining with the comparison of previous and our geochronological studies, we interpret these associations as indicating that these shear zones were originally a single, more flat-lying and sub- horizontal shear zone with a uniform top-to-NW shear sense before the folding-doming of the Tongbai- Dabie complexes and suggest that the Tongbai-Dabie orogenic belt experienced a uniform top-to-NW orogen-paraUel extension in the ductile lithosphere before the widespread magmatism in the Cretaceous.
文摘Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, a global shear stress pattern including shear stress values and directions of P and T principal axis was obatained. The distribution of ambient shear stress values in the globe is: the highest in intraplate followed by subduction zone, and the lowest in oceanic ridge. The horizontal directions of the maximum principal stresses we got are coincident very well with the result of Zoback (1989). The detail analysis of the stress state in Tonga region shows that: The subduction slab bends down in shallow by press and bends up in deep because of the resistance from deeper part. Between them, the slab is in an equilibrum state. After analysizing the global stress distribution, we got the result that: the plate is driven by a drag force from under its bottom, the plate motion results in its extensional state in oceanic ridge and compressive state in subduction zone.
基金This study was supported by the National Key Project "Study of the Natural Gas Fault System in the Tancheng-Lujiang Fault Belt (No. 95-101-01)" of the Ninth Five-Year Plan Period and the National Natural Science Foundation of China Grant 48970172.
文摘On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.
基金financially supported by the High Level Talent Introduction Program of Xinjiang Uyghur Autonomous Region 2018the National Postdoctoral Program(2018M643776)the Key R&D Program of China(2017YFC0601206)。
文摘The Xiaotian–Mozitan Shear Zone(XMSZ)is the boundary of the Dabie High-grade Metamorphic Complex(DHMC)and the North Huaiyang Tectonic Belt.It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermometers applied to mineral parageneses in mylonites of the shear zone give a temperature range of 623–691°C for the predeformation and 515–568°C for the syndeformation,respectively,which indicates a retrograde process of evolution.A few groups of zircon U-Pb ages were obtained from undeformed granitic veins and different types of deformed rocks in the zone.Zircons from the felsic ultramylonites are all magmatic,producing a weighted mean 206Pb/238U age of 754±8.1 Ma,which indicates the time of magmatic activities caused by rifting in the Neoproterozoic.Zircons from the granitic veins,cutting into the mylonites,are also of magmatic origin,producing a weighted mean 206 Pb/238 U age of 130±2.5 Ma,which represents the time of regional magmatic activity in the Cretaceous.Zircons from the mylonitic gneisses are of anatectic-metamorphic origins and are characterized by a core-mantle interior texture,which yielded several populations of ages including the Neoproterozoic ages with a weighted mean 206 Pb/238 U age of 762±18 Ma,similar to that of the felsic ultramylonites and the Early Cretaceous ages with a weighted mean 206Pb/238U age of 143±1.8 Ma,indicating the anatectic metamorphism in the Dabie Orogenic Belt(DOB).Based on integrated analysis of the structure,thermal conditions of ductile deformation and the contact relations of the dated rocks,the activation time of the Xiaotian–Mozitan Shear Zone is constrained between~143 Ma and 130 Ma,during which the DOB was undergoing a transition in tectonic regime from compression to extension.Therefore,the deformation and evolution of this shear zone plays an instrumental role in fully understanding this process.This research also inclines us to the interpretation of it as an extensional detachment,with regard to the tectonic properties of the shear zone.It may also be part of a continental scale extension in the background of the North China Block’s cratonic destruction,dominated by the subduction and roll-back of the Paleo-Pacific plate,but more detailed work is needed in order to unravel its complicated development.
文摘The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.
文摘A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.
文摘A series of tectonites were formed in the shear zone array of the Tongbai--Dabie Orogenic Belt, including mylonites, blastomylonites, semi--plastic mylonites and foliated cataclasitesas a result of multiple strain localization, strain softening and deformation partitioning.
基金the National Natural Science Foundation of China who provided necessary financial support for this study(Nos.41872218,41572179,and 41372204)the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an for providing a special fund to accomplish this study.
文摘The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.
基金National Natural Science Foundation of China (Grant 40473021) the National 973- Project of the Ministry of Science and Technology of China (2003CB214600) the Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and the jointed project of Max-Planck-Institute of Society and Chinese Academy of Sciences in Max-Planck-Institute of Nuclear Physics,Heidelberg, Germany.
文摘This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.
文摘Deformation characteristics of the dextral Dashankou ductile shear zone , parallel to the Tongbo-Dabie Orogenic Belt and regional stretching lineation patterns within the blueschist belt in Northern Hubei , China , are examined at various scales , respectively . The new data , combined with those obtained in the Wudangshan area , indicate a transpressive deformation involving a WNW directed nearly horizontal shearing accompanied by shortening across the orogenic belt . A kinematic model is proposed for development of the deformation within the Tongboshan segment . Based on these findings it can be seen that the convergence and collision between the North China Craton and the Yangtze Craton may locally be oblique during the Proterozoic Jinningian Orogeny . This oblique collision is probably related to a certain extent to the shapes of the older craton margins .