期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Dueling Double DQN的交通信号控制方法
1
作者 叶宝林 陈栋 +2 位作者 刘春元 陈滨 吴维敏 《计算机测量与控制》 2024年第7期154-161,共8页
为了提高交叉口通行效率缓解交通拥堵,深入挖掘交通状态信息中所包含的深层次隐含特征信息,提出了一种基于Dueling Double DQN(D3QN)的单交叉口交通信号控制方法;构建了一个基于深度强化学习Double DQN(DDQN)的交通信号控制模型,对动作... 为了提高交叉口通行效率缓解交通拥堵,深入挖掘交通状态信息中所包含的深层次隐含特征信息,提出了一种基于Dueling Double DQN(D3QN)的单交叉口交通信号控制方法;构建了一个基于深度强化学习Double DQN(DDQN)的交通信号控制模型,对动作-价值函数的估计值和目标值迭代运算过程进行了优化,克服基于深度强化学习DQN的交通信号控制模型存在收敛速度慢的问题;设计了一个新的Dueling Network解耦交通状态和相位动作的价值,增强Double DQN(DDQN)提取深层次特征信息的能力;基于微观仿真平台SUMO搭建了一个单交叉口模拟仿真框架和环境,开展仿真测试;仿真测试结果表明,与传统交通信号控制方法和基于深度强化学习DQN的交通信号控制方法相比,所提方法能够有效减少车辆平均等待时间、车辆平均排队长度和车辆平均停车次数,明显提升交叉口通行效率。 展开更多
关键词 交通信号控制 深度强化学习 dueling double dqn dueling Network
下载PDF
特征降维的深度强化学习脑卒中分类预测研究 被引量:4
2
作者 袁甜甜 李凤莲 +2 位作者 张雪英 胡风云 贾文辉 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第3期194-203,共10页
针对脑卒中筛查数据集冗余,特征较多,采用传统的分类算法效果较差的问题,为实现脑卒中筛查数据高效的诊断预测,建立了一种混合特征降维的深度强化学习分类预测优化模型。提出一种改进的CFS特征选择算法,并与PCA结合,对原始脑卒中筛查数... 针对脑卒中筛查数据集冗余,特征较多,采用传统的分类算法效果较差的问题,为实现脑卒中筛查数据高效的诊断预测,建立了一种混合特征降维的深度强化学习分类预测优化模型。提出一种改进的CFS特征选择算法,并与PCA结合,对原始脑卒中筛查数据集进行特征降维;基于Double DQN和Dueling DQN算法构建深度强化学习分类预测模型,引入一种更具鲁棒性的损失函数,对模型进行了优化,提高了模型的分类效果;对比已有的Naive Bayes、J48、SVM、KNN和DQN模型在公共数据集及脑卒中筛查数据集的实验结果,结果表明:所提模型在特征降维和分类预测2个方面均表现优越,在脑卒中筛查数据集上分类准确率优于对比算法,可为临床上脑卒中疾病的辅助诊断提供建议。 展开更多
关键词 特征降维 改进的CFS double dueling dqn 损失函数 脑卒中
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部