This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay ...This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay and bedrock layers that have a large impact on the stability of the dump were measured by direct shear tests and triaxial tests in laboratory.Then ultimate bearing capacity of the substrate were analyzed and calculated.This paper proposed three capacity expansion and increase plans and used GeoStudio software for comparison.Through computation of the stability of the dump site slope after capacity expansion and increase for each plan,the capacity expansion plan was determined.The capacity expansion and increase plan will solve the problem of the current insufficient containment capacity of the Hesgoula south dumping site,which is of great significance for saving mine transportation costs,improving work efficiency,and reducing grassland occupation.展开更多
Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential f...Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential failure. This zone is known as dynamic reactive zone which is easy to deform by external force, and inherent dangers of failure posing a threat to slope. Therefore, it is paramount to study the induced shear stress behavior in this zone particularly when IWD method is adopted within this zone. In this paper, a numerical study for investigating IWD-induced shear stress behavior has been carried out using Finite Element Method (FEM) with Strength Reduction approach. Different scenarios as per pit-slope depths, IWD heights and buffer zone lengths have been accounted and simulated using PHASE 2 to understand changes in induced shear stress imposed on the pit-slope. It is found that shear stress imposed on pit slope seems change dramatically with increasing IWD height for case of buffer zone length is less than 100-m-long.展开更多
Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented roc...Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented rocks and loose soil. Their charac-teristic is comparable to heavily discontinuous solid mass. The conventional approach of limit equilibrium methods provide safety factors for the slope but nothing about the stress-strain characteristics of the large dump mass. The designs of dump location and their respective geometry are integrated for the know-how of the stability characteristics of these dumps. The discrete element method uses a circular disk to represent the granular solid mass and their interactions are described by the Newton’s third law of motion. The displacement is described by the sliding of the circular disk. This work is focused on the modeling efficiency of the discrete element methods to represent the behaviour of mine dump masses with the specified joint plane for the limit equilibrium method. The advantage of the work lies on the ease of information retrieval at any point at the dump mass concerning the stress and strain histories, displacement, failures etc. which when integrated produces a better understanding of the stability of the dump masses.展开更多
基金The authors gratefully acknowledge the financial support from the National Key Research and Development Plan of China(No.2018YFC0604501)the National Natural Science Foundation of China(51674264)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing(No.800015Z1138).
文摘This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay and bedrock layers that have a large impact on the stability of the dump were measured by direct shear tests and triaxial tests in laboratory.Then ultimate bearing capacity of the substrate were analyzed and calculated.This paper proposed three capacity expansion and increase plans and used GeoStudio software for comparison.Through computation of the stability of the dump site slope after capacity expansion and increase for each plan,the capacity expansion plan was determined.The capacity expansion and increase plan will solve the problem of the current insufficient containment capacity of the Hesgoula south dumping site,which is of great significance for saving mine transportation costs,improving work efficiency,and reducing grassland occupation.
文摘Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential failure. This zone is known as dynamic reactive zone which is easy to deform by external force, and inherent dangers of failure posing a threat to slope. Therefore, it is paramount to study the induced shear stress behavior in this zone particularly when IWD method is adopted within this zone. In this paper, a numerical study for investigating IWD-induced shear stress behavior has been carried out using Finite Element Method (FEM) with Strength Reduction approach. Different scenarios as per pit-slope depths, IWD heights and buffer zone lengths have been accounted and simulated using PHASE 2 to understand changes in induced shear stress imposed on the pit-slope. It is found that shear stress imposed on pit slope seems change dramatically with increasing IWD height for case of buffer zone length is less than 100-m-long.
文摘Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented rocks and loose soil. Their charac-teristic is comparable to heavily discontinuous solid mass. The conventional approach of limit equilibrium methods provide safety factors for the slope but nothing about the stress-strain characteristics of the large dump mass. The designs of dump location and their respective geometry are integrated for the know-how of the stability characteristics of these dumps. The discrete element method uses a circular disk to represent the granular solid mass and their interactions are described by the Newton’s third law of motion. The displacement is described by the sliding of the circular disk. This work is focused on the modeling efficiency of the discrete element methods to represent the behaviour of mine dump masses with the specified joint plane for the limit equilibrium method. The advantage of the work lies on the ease of information retrieval at any point at the dump mass concerning the stress and strain histories, displacement, failures etc. which when integrated produces a better understanding of the stability of the dump masses.