Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ...The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance.展开更多
Nitrogen-14(^(14)N)overtone(OT)spectroscopy under fast magic angle spinning(MAS)conditions(>60 kHz)has emerged as a powerful technique for observing correlations and distances between ^(14)N and ^(1)H,owing to the ...Nitrogen-14(^(14)N)overtone(OT)spectroscopy under fast magic angle spinning(MAS)conditions(>60 kHz)has emerged as a powerful technique for observing correlations and distances between ^(14)N and ^(1)H,owing to the absence of the first-order quadrupolar broadenings.In addition,^(14)N^(OT) allows selective manipulation of ^(14)N nuclei for each site.Despite extensive theoretical and experimental studies,the spin dynamics of ^(14)N^(OT) remains under debate.In this study,we conducted experimental investigations to assess the spin dynamics of ^(14)N^(OT) using the rotational-echo saturation-pulse double-resonance(RESPDOR)sequence,which monitors population transfer induced by a^(14)N^(OT) pulse.The ^(14)N^(OT) spin dynamics is well represented by a model of a two-energy-level system.Unlike spin-1/2,the maximum excitation efficiency of ^(14)N^(OT) coherences of powdered solids,denoted by p,depends on the radiofrequency field(rf-field)strength due to orientation dependence of effective nutation fields even when pulse lengths are optimized.It is also found that the p factor,contributing to the ^(14)N^(OT) spin dynamics,is nearly independent of the B0 field.Consequently,the filtering efficiency of RESPDOR experiments exhibits negligible dependence on B0 when the ^(14)N^(OT) pulse length is optimized.The study also identifies the optimal experimental conditions for ^(14)N^(OT)/^(1)H RESPDOR correlation experiments.展开更多
BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancre...BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancreatitis(AP).AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP.METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells(MPC-83),and the results were confirmed by the levels of amylase and inflammatory factors.Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes.ZKSCAN3 and ALKBH5 were knocked down to study the function in AP.A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established.The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP.The expression of ZKSCAN3 was upregulated in AP.Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors,LC3-II/I and SQSTM1.Furthermore,ALKBH5 was upregulated in AP.Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP.Notably,the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA.The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP.Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA,which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner.CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP,thereby aggravating the severity of the disease.展开更多
As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated th...As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.展开更多
N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modi...N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.展开更多
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim...The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.展开更多
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and...Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeope...The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.展开更多
The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric can...BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.展开更多
BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 p...BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.展开更多
WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0...WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0.1))_(2)(C,N),the grains size of WC and mean free path of Co phase decrease,and adjacency of WC increases.Refinement and homogenization of grains enhance the transverse rupture strength(TRS)and the hardness.Meanwhile,the deflection and bridging of cracks keep the fracture toughness at a respectable level.The WC-10Co-0.6(Cr_(0.9),V_(0.1))_(2)(C,N)-0.025(V_(0.9),Cr_(0.1))_(2)(C,N)cemented carbides exhibit excellent comprehensive mechanical properties with the TRS of 4602.6 MPa,hardness of 1835 kg/mm^(2),and fracture toughness of 10.39 MPa·m^(1/2),respectively.However,the large pores are caused by excess N larger than 0.03 wt%and deteriorates the mechanical properties.We provide a new approach to WC-Co cemented carbides preparation with a narrow grain size distribution by adding novel grain growth inhibitors.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi an...The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi and Walia, and two control sites (Gassi and Walia). A total of fifty (50) soil samples were taken (24 from the Gassi site, 24 from the Walia site and 2 as control soils) and then analyzed to determine a number of physico-chemical parameters (pH, OM and electrical conductivity) and heavy metal concentrations in the various soils. The TME content (As, Cd, Cu, Cr, Ni, Pb, Hg and Zn) of the soils was determined by plasma-coupled Atomic Emission Spectrometry. In order to assess the level of contamination in Gassi and Walia soils, the geoaccumulation index (GeoIndex), contamination factor and degree of contamination were calculated. Results for physico-chemical parameters revealed that pH ranged from acidic (4.6) to moderately neutral (6.5), electrical conductivity was higher in cultivated soils (mean 292.14 μs/cm) than in control soils (mean 149.33 μs/cm), and soils were rich in organic matter. Overall, heavy metal concentrations in cultivated soils were higher than in control soils. The pollution estimate shows that soils in the area have no moderate contamination. The increase in TME concentrations in cultivated soils is thought to be due to the input of agricultural inputs to the soil. However, these levels are below the Average shale reference and Canadian guidelines for agricultural soil quality. Principal component analysis shows that metals are positively and significantly correlated with each other, and negatively and moderately significantly correlated with each other.展开更多
[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PP...[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real...Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.展开更多
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金supported by the National Natural Science Foundation of China(52374301 and 22279030)the Fundamental Research Funds for the Central Universities(N2223037)+1 种基金Hebei Key Laboratory of Dielectric and Electrolyte Functional Material,Northeastern University at Qinhuangdao(HKDEFM2021201)the Performance subsidy fund for the Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)。
文摘The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance.
文摘Nitrogen-14(^(14)N)overtone(OT)spectroscopy under fast magic angle spinning(MAS)conditions(>60 kHz)has emerged as a powerful technique for observing correlations and distances between ^(14)N and ^(1)H,owing to the absence of the first-order quadrupolar broadenings.In addition,^(14)N^(OT) allows selective manipulation of ^(14)N nuclei for each site.Despite extensive theoretical and experimental studies,the spin dynamics of ^(14)N^(OT) remains under debate.In this study,we conducted experimental investigations to assess the spin dynamics of ^(14)N^(OT) using the rotational-echo saturation-pulse double-resonance(RESPDOR)sequence,which monitors population transfer induced by a^(14)N^(OT) pulse.The ^(14)N^(OT) spin dynamics is well represented by a model of a two-energy-level system.Unlike spin-1/2,the maximum excitation efficiency of ^(14)N^(OT) coherences of powdered solids,denoted by p,depends on the radiofrequency field(rf-field)strength due to orientation dependence of effective nutation fields even when pulse lengths are optimized.It is also found that the p factor,contributing to the ^(14)N^(OT) spin dynamics,is nearly independent of the B0 field.Consequently,the filtering efficiency of RESPDOR experiments exhibits negligible dependence on B0 when the ^(14)N^(OT) pulse length is optimized.The study also identifies the optimal experimental conditions for ^(14)N^(OT)/^(1)H RESPDOR correlation experiments.
基金Supported by National Natural Science Foundation of China,No.81802450and Natural Science Foundation of Hunan Province,No.2020JJ4133 and No.2021JJ31135.
文摘BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancreatitis(AP).AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP.METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells(MPC-83),and the results were confirmed by the levels of amylase and inflammatory factors.Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes.ZKSCAN3 and ALKBH5 were knocked down to study the function in AP.A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established.The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP.The expression of ZKSCAN3 was upregulated in AP.Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors,LC3-II/I and SQSTM1.Furthermore,ALKBH5 was upregulated in AP.Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP.Notably,the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA.The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP.Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA,which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner.CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP,thereby aggravating the severity of the disease.
基金Supported by the National Natural Science Foundation of China,No.82100599 and No.81960112the Jiangxi Provincial Department of Scientific introductions,No.20212ACB216003 and No.20242BAB26122+1 种基金the Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine,No.2023Z021the Young Talents Project of Jiangxi Provincial Academic and Technical Leaders Training Program for Major Disciplines,No.20204BCJ23022.
文摘As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
基金Key Project Research and Development Plan of Hainan Province(No.ZDYF2020134,ZDYF2022SHFZ283)Natural Science Foundation of Hainan Province(No.821QN391)。
文摘N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.
基金supported by the National Natural Science Foundation of China(No.51872090)Natural Science Foundation of Hebei Province(No.E2019209433,E2022209158)Colleges and Universities in Hebei Province Science and Technology Research Project(No.JZX2024026).
文摘The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.
基金supported by the National Natural Science Foundation of China(Nos.31800369,32271686,U1904204)the State Scholarship Fund of Chinathe Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.182101510005)。
文摘Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金the Natural Science Foundation of Shandong Province(ZR2021QE289)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22201).
文摘The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金Supported by the Sub-Project of the National Key Research and Development Program,No.2021YFC2600263.
文摘BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.
基金Natural Science Foundation of Shandong Province,No.ZR2020MH207 and No.ZR2020MH251.
文摘BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.
基金Funded by the 2021 Strategic Cooperation Project between Sichuan University and The People's Government of Zigong(No.2021CDZG-1)Major Science and Technology Research Projects of Panxi,Sichuan Province(No.2022PXZB-04)。
文摘WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0.1))_(2)(C,N),the grains size of WC and mean free path of Co phase decrease,and adjacency of WC increases.Refinement and homogenization of grains enhance the transverse rupture strength(TRS)and the hardness.Meanwhile,the deflection and bridging of cracks keep the fracture toughness at a respectable level.The WC-10Co-0.6(Cr_(0.9),V_(0.1))_(2)(C,N)-0.025(V_(0.9),Cr_(0.1))_(2)(C,N)cemented carbides exhibit excellent comprehensive mechanical properties with the TRS of 4602.6 MPa,hardness of 1835 kg/mm^(2),and fracture toughness of 10.39 MPa·m^(1/2),respectively.However,the large pores are caused by excess N larger than 0.03 wt%and deteriorates the mechanical properties.We provide a new approach to WC-Co cemented carbides preparation with a narrow grain size distribution by adding novel grain growth inhibitors.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
文摘The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi and Walia, and two control sites (Gassi and Walia). A total of fifty (50) soil samples were taken (24 from the Gassi site, 24 from the Walia site and 2 as control soils) and then analyzed to determine a number of physico-chemical parameters (pH, OM and electrical conductivity) and heavy metal concentrations in the various soils. The TME content (As, Cd, Cu, Cr, Ni, Pb, Hg and Zn) of the soils was determined by plasma-coupled Atomic Emission Spectrometry. In order to assess the level of contamination in Gassi and Walia soils, the geoaccumulation index (GeoIndex), contamination factor and degree of contamination were calculated. Results for physico-chemical parameters revealed that pH ranged from acidic (4.6) to moderately neutral (6.5), electrical conductivity was higher in cultivated soils (mean 292.14 μs/cm) than in control soils (mean 149.33 μs/cm), and soils were rich in organic matter. Overall, heavy metal concentrations in cultivated soils were higher than in control soils. The pollution estimate shows that soils in the area have no moderate contamination. The increase in TME concentrations in cultivated soils is thought to be due to the input of agricultural inputs to the soil. However, these levels are below the Average shale reference and Canadian guidelines for agricultural soil quality. Principal component analysis shows that metals are positively and significantly correlated with each other, and negatively and moderately significantly correlated with each other.
基金Supported by National Key R&D Program for the Prevention and Control of Major Exotic Animal Diseases(2022YFD1800500)National Mutton Sheep Industrial Technology System(CARS39)+2 种基金Key Research and Development Program of Shandong Province(Major Science and Technology Innovation Project)(2021CXGC011306)Scientific Research Project of General Administration of Customs(2024HK033)Scientific Research Project of Jinan Customs(2023JK005).
文摘[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
文摘Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.