Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the pres...Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the present study,a TaqManminor groove binder(TaqMan-MGB)probe-based fluorescence quantitative real-time PCR(qPCR)was successfully developed and used for quantifying H.filipjevi from DNA extracts of soil.The primers and probe designed from the obtained RAPD-SCAR marker fragments of H.filipjevi showed high specificity to H.filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp.,1 Globodera spp.and 3 Pratylenchus spp.The qPCR assay is highly sensitive and provides improved H.filipjevi detection sensitivity of as low as 4^(-3) single second-stage juvenile(J2)DNAs,10^(-3) female DNAs,and 0.01μgμL^(-1) genomic DNAs.A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H.filipjevi in naturally infested field soils.There was a high correlation between the H.filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay.qPCR potentially provides a useful platform for the efficient detection and quantification of H.filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils.展开更多
Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In t...Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In this study, primers and a TaqMan probe specific to the conservative sequences of the 16S rRNA gene of E. tarda were designed. The concentration of primers and TaqMan probe were optimized to 200 nmol/L and 120 nmol/L, respectively. The detection sensitivity of the FQ- PCR assay was determined to be as low as five copies of the target sequence per reaction using the pGEM-16S rDNA recombinant plasmid as a template, which was 100 times more sensitive than conventional PCR. A standard curve by plotting the threshold cycle values (y) against the common logarithmic copies (logl0n~ as x; n~ is copy number) of pGEM-16S rDNA was generated. The results of intra- and inter-assay variability tests demonstrate that the established FQ-PCR method was highly reproducible. The assay was specific for E. tarda as it showed that there was no cross-reactivity to eight additional bacterial pathogen strains in aquaculture. Thus, the FQ-PCR assay has the potential for diagnostic purposes and for other applications, especially for the rapid detection and quantification of low-grade E. tarda infections.展开更多
Objective: To develop a duplex real-time PCR assay for pharmaceutical rapid microbial detection of Staphylococcus aureus and Pseudomonas aeruginosa. Methods: The specific primers and probes were designed to amplify th...Objective: To develop a duplex real-time PCR assay for pharmaceutical rapid microbial detection of Staphylococcus aureus and Pseudomonas aeruginosa. Methods: The specific primers and probes were designed to amplify the femB gene of S. aureus and the DNA gyrase subunit B gene of P. aeruginosa. The sensitivity of the system was detected by a multiple proportional dilution method. In order to examine the specificity of the system, other twenty-one bacteria strains were assayed simultaneously. Results: A highly sensitive and specific duplex real-time PCR assay for the detection of S. aureus and P. aeruginosa was established. The sensitivity was 50 copies/μL. The specificity was 100%. The whole detection procedure can be finished within 2.5 h. Conclusion: The duplex real-time PCR method is efficient in detecting with good sensitivity and specificity. There is a good prospect of this method applying in disease prevention and pharmaceutical industry due to the simultaneous detection of two pathogens.展开更多
[ Objective] To improve the accuracy and efficiency of the detection which used in Perkinsus sp and Marteilia refringens, and then short- en the detective cycle. [ Method] According to the gene sequence of Perkinsus s...[ Objective] To improve the accuracy and efficiency of the detection which used in Perkinsus sp and Marteilia refringens, and then short- en the detective cycle. [ Method] According to the gene sequence of Perkinsus sp and Marteilia refringens from gene bank, design two pairs of spe- cific primers and two TaqMan probes with different fluorophores labeled. Optimizing the reactive conditions and reagent concentration in order that establishing the duplex real-time PCR method for detecting Perkinsus sp and Marteilia refringens simultaneously. [ Result ] The sensitivity of the du- plex real-time PCR method which about Pertdnsus sp and Marteilia refringens is 40 template copies. After combine the templates of Perkinsus sp and Marteilia refringens with different concentrations, this method still could be detect this two protozoan efficiently and synchronously. [ Condudon] The es- tablished duplex real-time PCR method for detecting Perkinsus sp. and Marteilia refringens possesses lots of advantages, such as specific, sensitive, rapid, quantitative and reproducible, can be used for clinical detection of infection which was caused by Perkinsus sp. and Marteilia refringens.展开更多
Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed ur...Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples.展开更多
The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, ...The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.展开更多
基金financially supported by the National Natural Science Foundation of China(31972247)the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(ASTIP-2016-IPP-04)the Special Fund for Agro-scientific Research in the Public Interest,China(201503114)。
文摘Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the present study,a TaqManminor groove binder(TaqMan-MGB)probe-based fluorescence quantitative real-time PCR(qPCR)was successfully developed and used for quantifying H.filipjevi from DNA extracts of soil.The primers and probe designed from the obtained RAPD-SCAR marker fragments of H.filipjevi showed high specificity to H.filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp.,1 Globodera spp.and 3 Pratylenchus spp.The qPCR assay is highly sensitive and provides improved H.filipjevi detection sensitivity of as low as 4^(-3) single second-stage juvenile(J2)DNAs,10^(-3) female DNAs,and 0.01μgμL^(-1) genomic DNAs.A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H.filipjevi in naturally infested field soils.There was a high correlation between the H.filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay.qPCR potentially provides a useful platform for the efficient detection and quantification of H.filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils.
基金The Special Fund for Agro-scientific Research in the Public Interest under contract No.201103034Construction Special Fund of Modern Agriculture and Industrial Technology Research System under contract No.CARS-47
文摘Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In this study, primers and a TaqMan probe specific to the conservative sequences of the 16S rRNA gene of E. tarda were designed. The concentration of primers and TaqMan probe were optimized to 200 nmol/L and 120 nmol/L, respectively. The detection sensitivity of the FQ- PCR assay was determined to be as low as five copies of the target sequence per reaction using the pGEM-16S rDNA recombinant plasmid as a template, which was 100 times more sensitive than conventional PCR. A standard curve by plotting the threshold cycle values (y) against the common logarithmic copies (logl0n~ as x; n~ is copy number) of pGEM-16S rDNA was generated. The results of intra- and inter-assay variability tests demonstrate that the established FQ-PCR method was highly reproducible. The assay was specific for E. tarda as it showed that there was no cross-reactivity to eight additional bacterial pathogen strains in aquaculture. Thus, the FQ-PCR assay has the potential for diagnostic purposes and for other applications, especially for the rapid detection and quantification of low-grade E. tarda infections.
文摘Objective: To develop a duplex real-time PCR assay for pharmaceutical rapid microbial detection of Staphylococcus aureus and Pseudomonas aeruginosa. Methods: The specific primers and probes were designed to amplify the femB gene of S. aureus and the DNA gyrase subunit B gene of P. aeruginosa. The sensitivity of the system was detected by a multiple proportional dilution method. In order to examine the specificity of the system, other twenty-one bacteria strains were assayed simultaneously. Results: A highly sensitive and specific duplex real-time PCR assay for the detection of S. aureus and P. aeruginosa was established. The sensitivity was 50 copies/μL. The specificity was 100%. The whole detection procedure can be finished within 2.5 h. Conclusion: The duplex real-time PCR method is efficient in detecting with good sensitivity and specificity. There is a good prospect of this method applying in disease prevention and pharmaceutical industry due to the simultaneous detection of two pathogens.
文摘[ Objective] To improve the accuracy and efficiency of the detection which used in Perkinsus sp and Marteilia refringens, and then short- en the detective cycle. [ Method] According to the gene sequence of Perkinsus sp and Marteilia refringens from gene bank, design two pairs of spe- cific primers and two TaqMan probes with different fluorophores labeled. Optimizing the reactive conditions and reagent concentration in order that establishing the duplex real-time PCR method for detecting Perkinsus sp and Marteilia refringens simultaneously. [ Result ] The sensitivity of the du- plex real-time PCR method which about Pertdnsus sp and Marteilia refringens is 40 template copies. After combine the templates of Perkinsus sp and Marteilia refringens with different concentrations, this method still could be detect this two protozoan efficiently and synchronously. [ Condudon] The es- tablished duplex real-time PCR method for detecting Perkinsus sp. and Marteilia refringens possesses lots of advantages, such as specific, sensitive, rapid, quantitative and reproducible, can be used for clinical detection of infection which was caused by Perkinsus sp. and Marteilia refringens.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201103034)the Construction Special Fund of Modern Agriculture and Industrial Technology Research System(No.CARS-47)
文摘Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples.
基金Supported by the Innovative Team Funds of Northeast Agricultural University (CXT004-3-2)Foundation of Heilongjiang Educational Committee(11511030)
文摘The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.