The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical laye...The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.展开更多
The electrical coupling of myocytes and fibroblasts can play a role in inhibiting electrical impluse propagation in cardiac muscle. To understand the function of fibroblast–myocyte coupling in the aging heart, the sp...The electrical coupling of myocytes and fibroblasts can play a role in inhibiting electrical impluse propagation in cardiac muscle. To understand the function of fibroblast–myocyte coupling in the aging heart, the spiral-wave dynamics in the duplex networks with inhibitory coupling is numerically investigated by the Br–Eiswirth model. The numerical results show that the inhibitory coupling can change the wave amplitude, excited phase duration and excitability of the system. When the related parameters are properly chosen, the inhibitory coupling can induce local abnormal oscillation in the system and the Eckhaus instability of the spiral wave. For the dense inhibitory network, the maximal decrement(maximal increment) in the excited phase duration can reach 24.3%(13.4%), whereas the maximal decrement in wave amplitude approaches 28.1%. Upon increasing the inhibitory coupling strength, the system excitability is reduced and even completely suppressed when the interval between grid points in the inhibitory network is small enough. Moreover, the inhibitory coupling can lead to richer phase transition scenarios of the system, such as the transition from a stable spiral wave to turbulence and the transition from a meandering spiral wave to a planar wave. In addition, the self-sustaining planar wave, the unique meandering of spiral wave and inward spiral wave are observed. The physical mechanisms behind the phenomena are analyzed.展开更多
Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous ch...Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.展开更多
Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from stron...Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.展开更多
The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of th...The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.展开更多
In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplin...In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.展开更多
In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8...In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.展开更多
蜂窝网络下的同时同频全双工(CCFD)设备到设备(D2D)组网可以进一步提升网络频谱效率,然而由此引入的残余自干扰(RSI)及蜂窝用户(CU)与D2D用户(DU)之间共享频谱的干扰会严重影响到蜂窝用户的体验。因此,该文为蜂窝网络下同时同频全双工...蜂窝网络下的同时同频全双工(CCFD)设备到设备(D2D)组网可以进一步提升网络频谱效率,然而由此引入的残余自干扰(RSI)及蜂窝用户(CU)与D2D用户(DU)之间共享频谱的干扰会严重影响到蜂窝用户的体验。因此,该文为蜂窝网络下同时同频全双工组网设计了两种干扰协调算法,即CU和速率最大化算法(MaxSumCU)与CU最小速率最大化算法(MaxMinCU),在小区频谱效率得到提升的同时尽可能地保证CU的体验。对于MaxSumCU算法,该文以CU和速率为优化目标建立混合整数非线性规划问题(MINLP),其在数学上为非确定性多项式(NP-hard)问题。算法将其分解为功率控制与频谱资源分配两个子问题,并用图形规划找到最优功率解后,使用二向图最大权值匹配算法决定频谱共享的CU与DU。为了保证每一个蜂窝用户体验的公平性,该文设计了Max Min CU算法用以最大化所有CU速率中的最小值,该算法基于二分查找与二向图最小权值匹配算法来完成用户的资源分配。数值结果表明,与小区和速率最大化(MaxSumCell)设计相比,该文所提的两种算法在提升小区和速率的同时均有效地提升了蜂窝用户的体验。展开更多
星间链路是我国自主导航系统的重要技术支撑,基于相控阵天线的并发空分时分双工(CSTDD,concurrent spatial time division duplexing)组网体制为星间链路的实现提供了一种可行途径,该体制通过指向性天线形成窄波束切换指向来实现对整个...星间链路是我国自主导航系统的重要技术支撑,基于相控阵天线的并发空分时分双工(CSTDD,concurrent spatial time division duplexing)组网体制为星间链路的实现提供了一种可行途径,该体制通过指向性天线形成窄波束切换指向来实现对整个空域的复用,通过单条链路半双工方式工作实现卫星之间的双向通信,从而实现整个星间链路采用同一频点。在全星座组网未完成的情况下如何对星间网络的全网性能进行有效测试是一个技术难题;星间链路全网测试技术旨在利用星间链路CSTDD体制的特点,利用单台地面站设备,对星间链路CSTDD体制的全网性能进行测试;详细介绍了星间链路CSTDD体制的特点,提炼出了星间链路的测试需求;并根据CSTDD体制特点,依托单台地面站设备,组成星间链路测试设备;产生指定数量的虚拟卫星,和空中的被测试卫星组成星间链路网络,完成了星间链路物理链路、测量数据、通信数据的测试,为组建我国自主导航系统提供了技术支撑。展开更多
基金supported by the National Natural Science Foundation of China (No. 61401330)Natural Science Foundation of Shaanxi Province of China (No. 2016JQ6027)
文摘The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.
基金supported by the National Natural Science Foundation of China(Grant Nos.11565005 and 11365003)
文摘The electrical coupling of myocytes and fibroblasts can play a role in inhibiting electrical impluse propagation in cardiac muscle. To understand the function of fibroblast–myocyte coupling in the aging heart, the spiral-wave dynamics in the duplex networks with inhibitory coupling is numerically investigated by the Br–Eiswirth model. The numerical results show that the inhibitory coupling can change the wave amplitude, excited phase duration and excitability of the system. When the related parameters are properly chosen, the inhibitory coupling can induce local abnormal oscillation in the system and the Eckhaus instability of the spiral wave. For the dense inhibitory network, the maximal decrement(maximal increment) in the excited phase duration can reach 24.3%(13.4%), whereas the maximal decrement in wave amplitude approaches 28.1%. Upon increasing the inhibitory coupling strength, the system excitability is reduced and even completely suppressed when the interval between grid points in the inhibitory network is small enough. Moreover, the inhibitory coupling can lead to richer phase transition scenarios of the system, such as the transition from a stable spiral wave to turbulence and the transition from a meandering spiral wave to a planar wave. In addition, the self-sustaining planar wave, the unique meandering of spiral wave and inward spiral wave are observed. The physical mechanisms behind the phenomena are analyzed.
基金supported in part by the National High Technology Research and Development Program of China(Grant No.2014AA01A707)the Beijing Natural Science Foundation(Grant No.4131003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)(Grant No.20120005140002)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KZ201511232036)
文摘Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.
基金supported by the National High Technology Research and Development Program of China(Grant No.2014AA01A704)National Natural Science Foundation of China(Grant No.61271203)
文摘Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.
文摘The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.
文摘In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.
文摘In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.
文摘蜂窝网络下的同时同频全双工(CCFD)设备到设备(D2D)组网可以进一步提升网络频谱效率,然而由此引入的残余自干扰(RSI)及蜂窝用户(CU)与D2D用户(DU)之间共享频谱的干扰会严重影响到蜂窝用户的体验。因此,该文为蜂窝网络下同时同频全双工组网设计了两种干扰协调算法,即CU和速率最大化算法(MaxSumCU)与CU最小速率最大化算法(MaxMinCU),在小区频谱效率得到提升的同时尽可能地保证CU的体验。对于MaxSumCU算法,该文以CU和速率为优化目标建立混合整数非线性规划问题(MINLP),其在数学上为非确定性多项式(NP-hard)问题。算法将其分解为功率控制与频谱资源分配两个子问题,并用图形规划找到最优功率解后,使用二向图最大权值匹配算法决定频谱共享的CU与DU。为了保证每一个蜂窝用户体验的公平性,该文设计了Max Min CU算法用以最大化所有CU速率中的最小值,该算法基于二分查找与二向图最小权值匹配算法来完成用户的资源分配。数值结果表明,与小区和速率最大化(MaxSumCell)设计相比,该文所提的两种算法在提升小区和速率的同时均有效地提升了蜂窝用户的体验。
文摘星间链路是我国自主导航系统的重要技术支撑,基于相控阵天线的并发空分时分双工(CSTDD,concurrent spatial time division duplexing)组网体制为星间链路的实现提供了一种可行途径,该体制通过指向性天线形成窄波束切换指向来实现对整个空域的复用,通过单条链路半双工方式工作实现卫星之间的双向通信,从而实现整个星间链路采用同一频点。在全星座组网未完成的情况下如何对星间网络的全网性能进行有效测试是一个技术难题;星间链路全网测试技术旨在利用星间链路CSTDD体制的特点,利用单台地面站设备,对星间链路CSTDD体制的全网性能进行测试;详细介绍了星间链路CSTDD体制的特点,提炼出了星间链路的测试需求;并根据CSTDD体制特点,依托单台地面站设备,组成星间链路测试设备;产生指定数量的虚拟卫星,和空中的被测试卫星组成星间链路网络,完成了星间链路物理链路、测量数据、通信数据的测试,为组建我国自主导航系统提供了技术支撑。