The regional characteristics of dust events in China has b een mainly studied by using the data of dust storm, wind-blown sand and floating dust from 338 observation stations through China from 1954 to 2000. The resul...The regional characteristics of dust events in China has b een mainly studied by using the data of dust storm, wind-blown sand and floating dust from 338 observation stations through China from 1954 to 2000. The results of this study are as follows: (1) In China, there are two h igh frequent areas of dust events, one is located in the area of Min feng and Hotan in the South Xinjiang Basin, the other is situated in the area of Minqin and Jilantai in the Hexi Region. Furthermore, th e spatial distributions of the various types of dust events are diffe rent. The dust storms mainly occur in the arid and semiarid areas co vering the deserts and the areas undergoing desertification in northern China. Wind-blown sand and floating-dust not only occur in the areas where dust storms occur, but also extend to the neighboring areas. The range of wind-blown sand extends northeastward and southeastward, b ut floating-dust mainly extends southeastward to the low-latitude region such as the East China Plain and the area of the middle and lower reaches o f the Yangtze River. Compared with wind-blown sand, the floating-dust seldo m occurs in the high latitude areas such as North Xinjiang and North east China. (2) The affected areas of dust storms can be divided into seven sub-regions, that is, North Xinjiang Region, South Xinjiang Reg ion, Hexi Region, Qaidam Basin Region, Hetao Region, Northeastern China Region and Qinghai-Xizang (Tibet) Region. The area of the most freque nt occurrence of dust storms and floating-dust is in South Xinjiang Region, and of wind-blown sand in the Hexi Region. In general, the frequency of d ust events in all the seven regions shows a decreasing tendency from 19 54 to 2000, but there are certain differences between various dust events in d ifferent regions. The maximum interannual change and variance of dust events during this time happened in South Xinjiang Region and Hexi Re gion. The dust events generally occur most frequently in April in most pa rts of China. The spring occurred days of dust events occupied 60-70% of the whole year in Hetao Region and Northeastern China Region. However, in South Xinjiang Region and North Xinjiang Region, which was less affec ted by monsoon climate, dust events may occur at any time of the year, le ss than 50% of the events in this region occur during spring. In the remaining three regions 50-60% of the dust events occur in spring of a year.展开更多
Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6...Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.展开更多
We analyzed dust event occurrence and its seasonal distribution at 16 sites in the Tarim Basin,China.Although the overall frequency of dust events was the highest in spring in this region,its variation in other season...We analyzed dust event occurrence and its seasonal distribution at 16 sites in the Tarim Basin,China.Although the overall frequency of dust events was the highest in spring in this region,its variation in other seasons could be classified into three patterns:(1) frequency of dust events in autumn > that in summer > that in winter(at the Kashi and Kuche sites);(2) frequency in summer > that in winter > that in autumn(at the Ruoqiang site);and(3) frequency in summer > that in autumn > that in winter(at all other areas of the Tarim Basin).The frequency of dust events and their seasonal variations in the Tarim Basin were mainly controlled by wind speed and locally available dust sources;the former was the key control when dust sources did not differ significantly.The seasonal variation in evaporation had a smaller,but still significant effect on the frequency of dust events.展开更多
The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visib...The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visibility to 5 km, and sometimes even to less than 100 m. The severe and prolong drought recently afflicting the west Asia region has been suggested to be instrumental in producing an increased output of dust into the atmosphere from the region. Regarding the increasing of dust events over the west of Iran with the external origin in the recent decade (from 2000 to present), so the main dust-source areas over Iraq and Syria have been detected using the dust-source map of the southwest of Asia, satellite images and soil type maps. We considered the relationship between the increasing of dust events in the western of Iran and drought expansion over the main dust-production areas during the recent decade. Dust frequency data series, and drought variables which include the VHI (vegetation health index), precipitation and temperature data series in long-term and monthly scales have been monitored and compared. And then we used the correlation analysis that indicated the significant proximity between the dust events and droughts/dryness in a yearly scale and also during the warm season (May to Aug). Meantime the derived results from the T-student test for the aforementioned data series confirm the fact that the droughts are parallel to the increasing of dust events from 1996 to 2011 (especially in the recent decade). We found that the recent droughts in the external dust source areas had the remarkable potential to increase the dust events in the west of Iran.展开更多
Dust aerosols profoundly influence the radiative balance of the earth–atmosphere system and hence the global and regional climates.In this study,using multi-source satellite and ground-level observations combined wit...Dust aerosols profoundly influence the radiative balance of the earth–atmosphere system and hence the global and regional climates.In this study,using multi-source satellite and ground-level observations combined with meteorological data,we investigated the three-dimensional evolution and transport characteristics of aerosols during a dust event that occurred in Xinjiang,China from 19 to 21 March 2019.Analysis of the meteorological data reveals that the dust air mass initially appeared in the northwest of Xinjiang and was subsequently transported to the Hami and Turpan areas due to the prevailing northwesterly winds,after which the direction of the airflow shifted due to topography,and the dust air masses were transported into southern Xinjiang.The air quality in the affected areas decreased rapidly,accompanied by a significant increase in aerosol optical depth (AOD),with the maximum value exceeding 3.5 in some areas.In addition,the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO) data reveal that the aerosol particles in the dust-affected areas were mainly dust aerosols,with small amounts of pollutant dust aerosols.A reduction in the attenuated backscatter coefficient (β532||) was found with increasing altitude,with the dust aerosol pollution mainly distributed in the lower troposphere.The size of dust particles in the lower troposphere was relatively small and irregular.The depolarization ratio (PDR) values at altitudes of 8–10 km were relatively lower than those recorded in the lower troposphere,whereas the color ratio (CR)values were higher,which may have been influenced by the sparse vegetation coverage and poor subsurface conditions in Xinjiang,and attributable to the fact that regular large particles of dust are more likely to be dispersed to altitudes between 8 and 10 km within a short period of time.As a consequence of the meteorological conditions and topography,the dusting process in Xinjiang persisted for a relatively long period.These findings will contribute to enhanced understanding of the vertical distribution of aerosols in Northwest China.展开更多
By analyses of the dust layers in the Malan ice core from the northern Tibetan Plateau, it was found that dirty ratio in this core might be a good proxy for dust event frequency. The variations in the dirty ratio disp...By analyses of the dust layers in the Malan ice core from the northern Tibetan Plateau, it was found that dirty ratio in this core might be a good proxy for dust event frequency. The variations in the dirty ratio displayed a de- crease trend over the past 200 years, which implies that dust events became less frequent during the study period. The decrease trend in the variations in dust event frequency might be caused mostly by the natural processes, including increasing precipitation and weakening westerly which might be related with global warming. Furthermore, significant negative correlation was found between the dirty ratio and δ 18O in the Malan ice core. This is highly important for studying the effect of atmospheric dust on climate change.展开更多
In this paper, we analyzed the variations of dust proxies in the Dunde, Malan and Chongce ice cores from the northern Tibetan Plateau and the Hongjiannao lacustrine sediment core from north Shaanxi Province, and found...In this paper, we analyzed the variations of dust proxies in the Dunde, Malan and Chongce ice cores from the northern Tibetan Plateau and the Hongjiannao lacustrine sediment core from north Shaanxi Province, and found that they all showed a general decrease trend over the past century. Owing to the fact that all these ice cores and lacustrine core were retrieved from the margins and/or the leeward sides of the major areas of dust events in north China, their records could suggest that the dust event frequency in north China declined over the study period. This decrease trend might be attributed to increasing precipitation and weakening westerly. However, human activities have made the areal extent of desertification expand acceleratingly in north China. This status could make it possible that dust events would occur on a large spatial scale under the future climate change, which would be a big environmental issue we shall face.展开更多
The spatial trends of dustfall of different sizes over northern China during April and May 2001,and March 2002,and their influencing factors,were analyzed.We divided the dustfall into seven grades based on particle si...The spatial trends of dustfall of different sizes over northern China during April and May 2001,and March 2002,and their influencing factors,were analyzed.We divided the dustfall into seven grades based on particle size.Total dustfall and dustfall for each grade were highest in desert regions then in regions undergoing desertification,and the total dustfall,dustfall 【100 μm and dustfall 】250 μm were higher in western agricultural regions closer to desert areas than in eastern agricultural regions.The spatial trends in dustfall 【300 μm in diameter were most strongly correlated with dust events,and the content of coarse particles increased with increasing severity of dust events.Because the spatial trend for dust events appears to be controlled by geomorphic conditions,vegetation coverage,soil moisture,and the distance from dust source,dustfall 【300 μm in diameter appears to have the same controlling factors as dust events,but the control decreases with increasing particle size.Wind,the driving force for dust emissions,also influenced the spatial trends in dustfall 【200 μm in diameter,and especially for dustfall 50 to 100 μm in diameter.Although dustfall 【300 μm in diameter and precipitation were not strongly spatially correlated,there is some evidence that high precipitation decreased deposition by restraining blowing sand.The coarser the dustfall,the weaker the correlation with wind speed;however,transport of larger particles still occurs,and further research will be required to test the possibility that this dust is entrained mainly by the small-scale dust devils that are commonly observed in the study area.展开更多
The location of Central Asia,almost at the center of the global dust belt region,makes it susceptible for dust events.The studies on atmospheric impact of dust over the region are very limited despite the large area o...The location of Central Asia,almost at the center of the global dust belt region,makes it susceptible for dust events.The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions (Tianshan,Hindu Kush-KarakoramHimalayas,and Tibetan Plateau).In this study,we analyse and explain the modification in aerosols’physical,optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010–2018 at the AERONET station in Dushanbe,Tajikistan.Aerosol episodes were classified as strong anthropogenic,strong dust and extreme dust.The mean aerosol optical depth (AOD) during these three types of events was observed a factor of ~3,3.5 and 6.6,respectively,higher than the mean AOD for the period 2010–2018.The corresponding mean fine-mode fraction was 0.94,0.20 and 0.16,respectively,clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events,whereas coarse-mode dust aerosol dominated during the other two types of events.This was corroborated by the relationships among various aerosol parameters (AOD vs.AE,and EAE vs.AAE,SSA and RRI).The mean aerosol radiative forcing (ARF) at the top of the atmosphere (ARF_(TOA)),the bottom of the atmosphere (ARF_(BOA)),and in the atmosphere (ARFATM) were -35±7,-73±16,and38±17 Wm^(-2)during strong anthropogenic events,-48±12,-85±24,and 37±15 Wm^(-2)during strong dust event,and -68±19,-117±38,and 49±21 Wm-2during extreme dust events.Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5–1.6 K day^(-1)(strong anthropogenic events),0.4–1.9 K day^(-1)(strong dust events) and 0.8–2.7 K day^(-1)(extreme dust events).The source regions of air masses to Dushanbe during the onset of such events are also identified.Our study contributes to the understanding of dust and anthropogenic aerosols,in particular the extreme events and their disproportionally high radiative impacts over Central Asia.展开更多
The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Cir...The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events. The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation, with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.展开更多
By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pre...By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.展开更多
Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongl...Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongly affect the air quality of Hotan Prefecture. Although this region is characterized by the highest annual mean PMlo concentration values that are routinely recorded by environmental monitoring stations across China, both this phenomenon and its underlying causes have not been adequately addressed in previous researches. Reliable pollutant PM_10 data are currently retrieved using a tapered element oscillating microbalance (TEOM) 1400a, a direct real-time monitor, while additional concentration values including for PM_2.5, sulfur dioxide (SO_2), nitrogen dioxide (NO_2), carbon monoxide (CO) and ozone (O_3) have been collected in recent years by the Hotan Environmental Monitoring Station. Based on these data, this paper presents a comparison of the influences of different kinds of sand-dust weather events on PM_10 (or PM_2.5) as well as the concentrations of other gaseous pollutants in Hotan Prefecture. It is revealed that the highest monthly average PM_10 concentrations are observed in the spring because of the frequent occurrence of three distinct kinds of sand-dust weather events at this time, including dust storms, blowing dust and floating dust. The floating dust makes the most significant contribution to PM_10 (or PM_2.5) concentration in this region, a result that differs from eastern Chinese cities where the heaviest PM_10 pollution occurs usually in winter and air pollution results from the excess emission of local anthropogenic pollutants. It is also shown that PM_10 concentration varies within wpical dust storms. PM_10 concentrations vary among 20 dust storm events within Hotan Prefecture, and the hourly mean concentrations tend to sharply increase initially then slowly decreasing over time. Data collected from cities in eastern China show the opposite with the hourly mean PM_10 (or PM_2.5) concentration tending to slowly increase then sharply decrease during heavy air pollution due to the excess emission of local anthropogenic pollutants. It is also found that the concentration of gaseous pollutants during sand-dust weather events tends to be lower than those cases under clear sky conditions. This indicates that these dust events effectively remove and rapidly diffuse gaseous pollutants. The analysis also shows that the concentration of SO_2 decreases gradually at the onset of all three kinds of sand-dust weather events because of rapidly increasing wind velocity and the development of favorable atmospheric conditions for diffusion. In contrast, changes in O_3 and NO_2 concentrations conformed to the opposite pattern during all three kinds of sand-dust weather events within this region, implying the inter transformation of these gas species during these events.展开更多
基金National Key Project for Basic Research, No.G2000048703 National Natural Science Foundation of China, No.39990490 Key project of the Chinese Academy of Sciences, No.KZCX1-Y-05
文摘The regional characteristics of dust events in China has b een mainly studied by using the data of dust storm, wind-blown sand and floating dust from 338 observation stations through China from 1954 to 2000. The results of this study are as follows: (1) In China, there are two h igh frequent areas of dust events, one is located in the area of Min feng and Hotan in the South Xinjiang Basin, the other is situated in the area of Minqin and Jilantai in the Hexi Region. Furthermore, th e spatial distributions of the various types of dust events are diffe rent. The dust storms mainly occur in the arid and semiarid areas co vering the deserts and the areas undergoing desertification in northern China. Wind-blown sand and floating-dust not only occur in the areas where dust storms occur, but also extend to the neighboring areas. The range of wind-blown sand extends northeastward and southeastward, b ut floating-dust mainly extends southeastward to the low-latitude region such as the East China Plain and the area of the middle and lower reaches o f the Yangtze River. Compared with wind-blown sand, the floating-dust seldo m occurs in the high latitude areas such as North Xinjiang and North east China. (2) The affected areas of dust storms can be divided into seven sub-regions, that is, North Xinjiang Region, South Xinjiang Reg ion, Hexi Region, Qaidam Basin Region, Hetao Region, Northeastern China Region and Qinghai-Xizang (Tibet) Region. The area of the most freque nt occurrence of dust storms and floating-dust is in South Xinjiang Region, and of wind-blown sand in the Hexi Region. In general, the frequency of d ust events in all the seven regions shows a decreasing tendency from 19 54 to 2000, but there are certain differences between various dust events in d ifferent regions. The maximum interannual change and variance of dust events during this time happened in South Xinjiang Region and Hexi Re gion. The dust events generally occur most frequently in April in most pa rts of China. The spring occurred days of dust events occupied 60-70% of the whole year in Hetao Region and Northeastern China Region. However, in South Xinjiang Region and North Xinjiang Region, which was less affec ted by monsoon climate, dust events may occur at any time of the year, le ss than 50% of the events in this region occur during spring. In the remaining three regions 50-60% of the dust events occur in spring of a year.
基金supported by the Gansu Province Science Fund for Distinguished Young Scholars (1506RJDA282)the National Natural Science Foundation of China (41271039, 91547102)+2 种基金the Open Foundation of MOE Key Laboratory of Western China’s Environmental System of Lanzhou Universitythe Open Foundation from State Key Laboratory (SKLFSE201403)the West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.
基金the funding from the Natural Science Foundation of China (Grant No. 40638038)
文摘We analyzed dust event occurrence and its seasonal distribution at 16 sites in the Tarim Basin,China.Although the overall frequency of dust events was the highest in spring in this region,its variation in other seasons could be classified into three patterns:(1) frequency of dust events in autumn > that in summer > that in winter(at the Kashi and Kuche sites);(2) frequency in summer > that in winter > that in autumn(at the Ruoqiang site);and(3) frequency in summer > that in autumn > that in winter(at all other areas of the Tarim Basin).The frequency of dust events and their seasonal variations in the Tarim Basin were mainly controlled by wind speed and locally available dust sources;the former was the key control when dust sources did not differ significantly.The seasonal variation in evaporation had a smaller,but still significant effect on the frequency of dust events.
文摘The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visibility to 5 km, and sometimes even to less than 100 m. The severe and prolong drought recently afflicting the west Asia region has been suggested to be instrumental in producing an increased output of dust into the atmosphere from the region. Regarding the increasing of dust events over the west of Iran with the external origin in the recent decade (from 2000 to present), so the main dust-source areas over Iraq and Syria have been detected using the dust-source map of the southwest of Asia, satellite images and soil type maps. We considered the relationship between the increasing of dust events in the western of Iran and drought expansion over the main dust-production areas during the recent decade. Dust frequency data series, and drought variables which include the VHI (vegetation health index), precipitation and temperature data series in long-term and monthly scales have been monitored and compared. And then we used the correlation analysis that indicated the significant proximity between the dust events and droughts/dryness in a yearly scale and also during the warm season (May to Aug). Meantime the derived results from the T-student test for the aforementioned data series confirm the fact that the droughts are parallel to the increasing of dust events from 1996 to 2011 (especially in the recent decade). We found that the recent droughts in the external dust source areas had the remarkable potential to increase the dust events in the west of Iran.
基金Supported by the National Natural Science Foundation of China(41771470).
文摘Dust aerosols profoundly influence the radiative balance of the earth–atmosphere system and hence the global and regional climates.In this study,using multi-source satellite and ground-level observations combined with meteorological data,we investigated the three-dimensional evolution and transport characteristics of aerosols during a dust event that occurred in Xinjiang,China from 19 to 21 March 2019.Analysis of the meteorological data reveals that the dust air mass initially appeared in the northwest of Xinjiang and was subsequently transported to the Hami and Turpan areas due to the prevailing northwesterly winds,after which the direction of the airflow shifted due to topography,and the dust air masses were transported into southern Xinjiang.The air quality in the affected areas decreased rapidly,accompanied by a significant increase in aerosol optical depth (AOD),with the maximum value exceeding 3.5 in some areas.In addition,the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO) data reveal that the aerosol particles in the dust-affected areas were mainly dust aerosols,with small amounts of pollutant dust aerosols.A reduction in the attenuated backscatter coefficient (β532||) was found with increasing altitude,with the dust aerosol pollution mainly distributed in the lower troposphere.The size of dust particles in the lower troposphere was relatively small and irregular.The depolarization ratio (PDR) values at altitudes of 8–10 km were relatively lower than those recorded in the lower troposphere,whereas the color ratio (CR)values were higher,which may have been influenced by the sparse vegetation coverage and poor subsurface conditions in Xinjiang,and attributable to the fact that regular large particles of dust are more likely to be dispersed to altitudes between 8 and 10 km within a short period of time.As a consequence of the meteorological conditions and topography,the dusting process in Xinjiang persisted for a relatively long period.These findings will contribute to enhanced understanding of the vertical distribution of aerosols in Northwest China.
基金supported by the Century Program(Grant No.2004401)the Innovation Research Project of Chinese Academy of Sciences(Grant No.KZCX3-SW-339-3)+2 种基金National Basic Research Program of China(Grant No.2005CB422003)National Natural Science Foundation of China(Grant No.40121101)the Knowledge Innovation Project of CAREERI(Grant Nos.2003107 and 2004102).
文摘By analyses of the dust layers in the Malan ice core from the northern Tibetan Plateau, it was found that dirty ratio in this core might be a good proxy for dust event frequency. The variations in the dirty ratio displayed a de- crease trend over the past 200 years, which implies that dust events became less frequent during the study period. The decrease trend in the variations in dust event frequency might be caused mostly by the natural processes, including increasing precipitation and weakening westerly which might be related with global warming. Furthermore, significant negative correlation was found between the dirty ratio and δ 18O in the Malan ice core. This is highly important for studying the effect of atmospheric dust on climate change.
基金Supported by the Centurial Program (Grant No. 2004401)the Innovation Re-search Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-339-3)+1 种基金Chinese NSF (Grant Nos.40525001 and 40121101)the National Basic Research Program of China (Grant No. 2005CB422003)
文摘In this paper, we analyzed the variations of dust proxies in the Dunde, Malan and Chongce ice cores from the northern Tibetan Plateau and the Hongjiannao lacustrine sediment core from north Shaanxi Province, and found that they all showed a general decrease trend over the past century. Owing to the fact that all these ice cores and lacustrine core were retrieved from the margins and/or the leeward sides of the major areas of dust events in north China, their records could suggest that the dust event frequency in north China declined over the study period. This decrease trend might be attributed to increasing precipitation and weakening westerly. However, human activities have made the areal extent of desertification expand acceleratingly in north China. This status could make it possible that dust events would occur on a large spatial scale under the future climate change, which would be a big environmental issue we shall face.
基金the Natural Science Foundation of China through grant No. 40638038
文摘The spatial trends of dustfall of different sizes over northern China during April and May 2001,and March 2002,and their influencing factors,were analyzed.We divided the dustfall into seven grades based on particle size.Total dustfall and dustfall for each grade were highest in desert regions then in regions undergoing desertification,and the total dustfall,dustfall 【100 μm and dustfall 】250 μm were higher in western agricultural regions closer to desert areas than in eastern agricultural regions.The spatial trends in dustfall 【300 μm in diameter were most strongly correlated with dust events,and the content of coarse particles increased with increasing severity of dust events.Because the spatial trend for dust events appears to be controlled by geomorphic conditions,vegetation coverage,soil moisture,and the distance from dust source,dustfall 【300 μm in diameter appears to have the same controlling factors as dust events,but the control decreases with increasing particle size.Wind,the driving force for dust emissions,also influenced the spatial trends in dustfall 【200 μm in diameter,and especially for dustfall 50 to 100 μm in diameter.Although dustfall 【300 μm in diameter and precipitation were not strongly spatially correlated,there is some evidence that high precipitation decreased deposition by restraining blowing sand.The coarser the dustfall,the weaker the correlation with wind speed;however,transport of larger particles still occurs,and further research will be required to test the possibility that this dust is entrained mainly by the small-scale dust devils that are commonly observed in the study area.
基金This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA20040501)the National Natural Science Foundation of China(41907328,41630754)+3 种基金State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2020)CAS-President’s International Fellowship Initiative(PIFI,Grant no.2019PC0076)the support provided by the Institute for Advanced Sustainability Studies(IASS),which is funded by the German Federal Ministry for Education and Research(BMBF)and the Brandenburg Ministry for Science,Research and Culture(MWFK)the International Science and Technology Center(ISTC)Projects(T-1688 and T-2076)。
文摘The location of Central Asia,almost at the center of the global dust belt region,makes it susceptible for dust events.The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions (Tianshan,Hindu Kush-KarakoramHimalayas,and Tibetan Plateau).In this study,we analyse and explain the modification in aerosols’physical,optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010–2018 at the AERONET station in Dushanbe,Tajikistan.Aerosol episodes were classified as strong anthropogenic,strong dust and extreme dust.The mean aerosol optical depth (AOD) during these three types of events was observed a factor of ~3,3.5 and 6.6,respectively,higher than the mean AOD for the period 2010–2018.The corresponding mean fine-mode fraction was 0.94,0.20 and 0.16,respectively,clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events,whereas coarse-mode dust aerosol dominated during the other two types of events.This was corroborated by the relationships among various aerosol parameters (AOD vs.AE,and EAE vs.AAE,SSA and RRI).The mean aerosol radiative forcing (ARF) at the top of the atmosphere (ARF_(TOA)),the bottom of the atmosphere (ARF_(BOA)),and in the atmosphere (ARFATM) were -35±7,-73±16,and38±17 Wm^(-2)during strong anthropogenic events,-48±12,-85±24,and 37±15 Wm^(-2)during strong dust event,and -68±19,-117±38,and 49±21 Wm-2during extreme dust events.Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5–1.6 K day^(-1)(strong anthropogenic events),0.4–1.9 K day^(-1)(strong dust events) and 0.8–2.7 K day^(-1)(extreme dust events).The source regions of air masses to Dushanbe during the onset of such events are also identified.Our study contributes to the understanding of dust and anthropogenic aerosols,in particular the extreme events and their disproportionally high radiative impacts over Central Asia.
基金This research was jointly supported by the Chinese Academy of Sciences key program under Crant KZCX3-SW-221the National Natural Science Foundation of China under Grant Nos.40125014 and 40475037.
文摘The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events. The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation, with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.
基金supported by China Meteorological Administration (CMA) Specific Research on ClimateChange (No. CCSF-10-06)the National Key Scientific Research Program of Global Change (No. 2010CB951001)
文摘By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.
基金supported by the National Natural Science Foundation of China(91644226)the National Key Research Project of China(2016YFA0602004)the Fundamental Research Funds of Chinese Academy of Meteorological Sciences(2017Y005)
文摘Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongly affect the air quality of Hotan Prefecture. Although this region is characterized by the highest annual mean PMlo concentration values that are routinely recorded by environmental monitoring stations across China, both this phenomenon and its underlying causes have not been adequately addressed in previous researches. Reliable pollutant PM_10 data are currently retrieved using a tapered element oscillating microbalance (TEOM) 1400a, a direct real-time monitor, while additional concentration values including for PM_2.5, sulfur dioxide (SO_2), nitrogen dioxide (NO_2), carbon monoxide (CO) and ozone (O_3) have been collected in recent years by the Hotan Environmental Monitoring Station. Based on these data, this paper presents a comparison of the influences of different kinds of sand-dust weather events on PM_10 (or PM_2.5) as well as the concentrations of other gaseous pollutants in Hotan Prefecture. It is revealed that the highest monthly average PM_10 concentrations are observed in the spring because of the frequent occurrence of three distinct kinds of sand-dust weather events at this time, including dust storms, blowing dust and floating dust. The floating dust makes the most significant contribution to PM_10 (or PM_2.5) concentration in this region, a result that differs from eastern Chinese cities where the heaviest PM_10 pollution occurs usually in winter and air pollution results from the excess emission of local anthropogenic pollutants. It is also shown that PM_10 concentration varies within wpical dust storms. PM_10 concentrations vary among 20 dust storm events within Hotan Prefecture, and the hourly mean concentrations tend to sharply increase initially then slowly decreasing over time. Data collected from cities in eastern China show the opposite with the hourly mean PM_10 (or PM_2.5) concentration tending to slowly increase then sharply decrease during heavy air pollution due to the excess emission of local anthropogenic pollutants. It is also found that the concentration of gaseous pollutants during sand-dust weather events tends to be lower than those cases under clear sky conditions. This indicates that these dust events effectively remove and rapidly diffuse gaseous pollutants. The analysis also shows that the concentration of SO_2 decreases gradually at the onset of all three kinds of sand-dust weather events because of rapidly increasing wind velocity and the development of favorable atmospheric conditions for diffusion. In contrast, changes in O_3 and NO_2 concentrations conformed to the opposite pattern during all three kinds of sand-dust weather events within this region, implying the inter transformation of these gas species during these events.