The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emiss...The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m^2 calendered polyester needle felt; total surface area 4.2 m^2) operated in Ap-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m^3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were sep- arated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentra- tion. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ~5 μm (roughly the PM2.s mass frac- tion). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10^-5 to 10^-6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m^3 at the reference concentration of 10 R/m^2.展开更多
In the present paper,the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena.The acoustic resonance was excited by using a controlled speaker ...In the present paper,the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena.The acoustic resonance was excited by using a controlled speaker at the middle of a test duct.We measured the sound pressure level,frequency response characteristics,acoustic damping ratio,mode shape,and lightweight materials response to acoustic resonance excited by a speaker.As a result,the acoustic damping ratio decreased as the mode number of acoustic resonance increased.The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited.It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.展开更多
An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. proc...An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.展开更多
文摘The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m^2 calendered polyester needle felt; total surface area 4.2 m^2) operated in Ap-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m^3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were sep- arated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentra- tion. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ~5 μm (roughly the PM2.s mass frac- tion). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10^-5 to 10^-6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m^3 at the reference concentration of 10 R/m^2.
基金supported by a research grant from Harada commemorative foundation
文摘In the present paper,the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena.The acoustic resonance was excited by using a controlled speaker at the middle of a test duct.We measured the sound pressure level,frequency response characteristics,acoustic damping ratio,mode shape,and lightweight materials response to acoustic resonance excited by a speaker.As a result,the acoustic damping ratio decreased as the mode number of acoustic resonance increased.The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited.It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.
文摘An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.