In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temp...In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temperature effect(electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect(dimensionless Debye shielding parameter k) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of k when τ?>?3.5. However, the system will be unstable when τ?=?1 and k> 4.1.展开更多
The effect of the number of defect particles on the structure and dispersion relations of a two-dimensional(2D) dust lattice is studied by molecular dynamics(MD) simulation. The dust lattice structures are characteriz...The effect of the number of defect particles on the structure and dispersion relations of a two-dimensional(2D) dust lattice is studied by molecular dynamics(MD) simulation. The dust lattice structures are characterized by particle distribution, nearest neighbor configuration and pair correlation function. The current autocorrelation function, the dispersion relation and sound speed are used to represent the wave properties. The wave propagation of the dust lattice closely relates to the lattice structure. It shows that the number of defect particles can affect the dust lattice local structure and then affect the dispersion relations of waves propagating in it. The presence of defect particles has a greater effect on the transverse waves than on the longitudinal waves of the dust lattice. The appropriate number of defect particles can weaken the anisotropy property of the lattice.展开更多
A Korteweg-de Vires-type (KdV-type) equation and a modified Nonlinear Schrodinger equation (NLSE) for the dust lattice wave (DLW) are derived in a weakly inhomogeneous dust plasma crystal. It seems that the ampl...A Korteweg-de Vires-type (KdV-type) equation and a modified Nonlinear Schrodinger equation (NLSE) for the dust lattice wave (DLW) are derived in a weakly inhomogeneous dust plasma crystal. It seems that the amplitude and the velocity of the dust lattice solitary waves decay exponentiaJly with increasing time in a dust lattice. The modulational instability of this dust lattice envelope waves is investigated as well. It is found that the waves are modulational stable under certain conditions. On the other hand, the waves are modulationaJ unstable if the conditions are not satisfied.展开更多
基金supported by National Natural Science Foundation of China (Nos. 11247016, 11763006 and 11705080)the International S&T Cooperation Program of China (No. 2015DFA61800)+1 种基金the Natural Science Foundation of JiangXi Province (Nos. 2014ZBAB202001, 20151BAB212010, 20151BAB202023 and 2015ZBAB202006)the Natural Science Foundation of JiangXi University of Technology (No. ZR15YB09)
文摘In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temperature effect(electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect(dimensionless Debye shielding parameter k) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of k when τ?>?3.5. However, the system will be unstable when τ?=?1 and k> 4.1.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12075315 and 11675261)。
文摘The effect of the number of defect particles on the structure and dispersion relations of a two-dimensional(2D) dust lattice is studied by molecular dynamics(MD) simulation. The dust lattice structures are characterized by particle distribution, nearest neighbor configuration and pair correlation function. The current autocorrelation function, the dispersion relation and sound speed are used to represent the wave properties. The wave propagation of the dust lattice closely relates to the lattice structure. It shows that the number of defect particles can affect the dust lattice local structure and then affect the dispersion relations of waves propagating in it. The presence of defect particles has a greater effect on the transverse waves than on the longitudinal waves of the dust lattice. The appropriate number of defect particles can weaken the anisotropy property of the lattice.
文摘A Korteweg-de Vires-type (KdV-type) equation and a modified Nonlinear Schrodinger equation (NLSE) for the dust lattice wave (DLW) are derived in a weakly inhomogeneous dust plasma crystal. It seems that the amplitude and the velocity of the dust lattice solitary waves decay exponentiaJly with increasing time in a dust lattice. The modulational instability of this dust lattice envelope waves is investigated as well. It is found that the waves are modulational stable under certain conditions. On the other hand, the waves are modulationaJ unstable if the conditions are not satisfied.